Zobrazeno 1 - 10
of 782
pro vyhledávání: '"self-referential sentences"'
Autor:
Stepanov, Vladimir A. vastvast@yandex.ru
Publikováno v:
Studia Humana. Dec2022, Vol. 11 Issue 3/4, p25-29. 5p.
Autor:
Lajevardi, Kaave, Salehi, Saeed
Publikováno v:
Theoria 85:1 (2019) 8--17
We take an argument of G\"odel's from his ground-breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: the sentence $G$ says about itself that it is not provable, and $G$ is indeed not provable; therefore, $G
Externí odkaz:
http://arxiv.org/abs/1607.04055
Autor:
Vezerides, K., Kehagias, Ath.
We study self-referential sentences of the type related to the Liar paradox. In particular, we consider the problem of assigning consistent fuzzy truth values to collections of self-referential sentences. We show that the problem can be reduced to th
Externí odkaz:
http://arxiv.org/abs/cs/0309046
Autor:
Vladimir A. Stepanov
Publikováno v:
Studia Humana. 11:25-29
Non-classical logic via approximation of self-referential sentences by dynamical systems are consistently presented. The new 6-valued truth values (here A=Liar, V=TruthTeller) are presented as a function of the classical truth values x i ∈ {0,1}, w
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Laudański, Ludomir M.1 ludek@prz.edu.pl
Publikováno v:
Didactics of Mathematics. 2013, Issue 10, p57-64. 8p.
Autor:
Vladimir Stepanov
Publikováno v:
Logiko-filosofskie studii; Том 19, № 2 (2021); 145-150
Логико-философские штудии; Том 19, № 2 (2021); 145-150
Логико-философские штудии; Том 19, № 2 (2021); 145-150
Arguments in defense of introducing the self-referencing quantifier Sx and its approxi- mation on dynamical systems areconsistently presented. The case of classical logic is described in detail. Generated 3-truth tables that match Priest’s tables (
Autor:
Kaave Lajevardi, Saeed Salehi
Publikováno v:
Theoria. 85:8-17
We take an argument of G\"odel's from his ground-breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: the sentence $G$ says about itself that it is not provable, and $G$ is indeed not provable; therefore, $G
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ludomir M. Laudański
Publikováno v:
Didactics of Mathematics. 10
The paper discusses the well-known logic paradox formulated by Grelling. It belongs to the class of paradoxes known as Russell's paradoxes. Analysing Grelling"s paradox, the author arrives at the conclusion showing its apparent nature, in other words