Zobrazeno 1 - 10
of 123
pro vyhledávání: '"saliency estimation"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Elena Nicora, Nicoletta Noceti
Publikováno v:
Frontiers in Computer Science, Vol 4 (2022)
In this paper, we investigate the potential of a family of efficient filters—the Gray-Code Kernels (GCKs)—for addressing visual saliency estimation with a focus on motion information. Our implementation relies on the use of 3D kernels applied to
Externí odkaz:
https://doaj.org/article/dda4ebd3308c4fb4bcdbe6070c0625f0
Publikováno v:
IEEE Access, Vol 8, Pp 194485-194496 (2020)
Ship detection is of considerable significance in both military and civilian application domains. Deep Convolutional Neural Network (DCNN) with region proposal mechanism, e.g., Faster R-CNN, performs outstandingly in ship detection with high-resoluti
Externí odkaz:
https://doaj.org/article/98cb74f012dd449da9c767fb3f0709fd
Autor:
Muhammad Attique Khan, Seifedine Kadry, Majed Alhaisoni, Yunyoung Nam, Yudong Zhang, Venkatesan Rajinikanth, Muhammad Shahzad Sarfraz
Publikováno v:
IEEE Access, Vol 8, Pp 132850-132859 (2020)
The continuous improvements in the area of medical imaging, makes the patient monitoring a crucial concern. The internet of things (IoT) embedded in a medical technologies to collect data from human body through sensors, wireless connectivity etc. Th
Externí odkaz:
https://doaj.org/article/e778eb71620b4e328e0bc28dda6001fd
Autor:
Muhammad Attique Khan, Naveera Sahar, Wazir Zada Khan, Majed Alhaisoni, Usman Tariq, Muhammad H. Zayyan, Ye Jin Kim, Byoungchol Chang
Publikováno v:
Diagnostics, Vol 12, Iss 11, p 2718 (2022)
In the last few years, artificial intelligence has shown a lot of promise in the medical domain for the diagnosis and classification of human infections. Several computerized techniques based on artificial intelligence (AI) have been introduced in th
Externí odkaz:
https://doaj.org/article/461e2635f5c4479cadc49549a246a8ae
Recent Advances in Saliency Estimation for Omnidirectional Images, Image Groups, and Video Sequences
Autor:
Marco Buzzelli
Publikováno v:
Applied Sciences, Vol 10, Iss 15, p 5143 (2020)
We present a review of methods for automatic estimation of visual saliency: the perceptual property that makes specific elements in a scene stand out and grab the attention of the viewer. We focus on domains that are especially recent and relevant, a
Externí odkaz:
https://doaj.org/article/6f076ffe483b415b9654a1e486d33899
Autor:
Byeongkeun Kang, Yeejin Lee
Publikováno v:
Sensors, Vol 20, Iss 7, p 2030 (2020)
Driving is a task that puts heavy demands on visual information, thereby the human visual system plays a critical role in making proper decisions for safe driving. Understanding a driver’s visual attention and relevant behavior information is a cha
Externí odkaz:
https://doaj.org/article/cfa6363d5d734e7dbe781707f1796903
Autor:
Vasilios C. Ilioudis
Publikováno v:
Machines, Vol 8, Iss 1, p 14 (2020)
This paper presents a sensorless control method of a permanent magnet synchronous machine (PMSM) with magnetic saliency estimation. This is based on a high-frequency injection (HFI) technique applied on the modified PMSM model in the γδ reference f
Externí odkaz:
https://doaj.org/article/8653f41d02c34ac7b4c36b49f0e8631e
Autor:
Alberto Lopez-Alanis, Rocio A. Lizarraga-Morales, Raul E. Sanchez-Yanez, Diana E. Martinez-Rodriguez, Marco A. Contreras-Cruz
Publikováno v:
Applied Sciences, Vol 9, Iss 10, p 2015 (2019)
In this paper, we propose an approach for salient pixel detection using a rule-based system. In our proposal, rules are automatically learned by combining four saliency models. The learned rules are utilized for the detection of pixels of the salient
Externí odkaz:
https://doaj.org/article/643cbdba973740a3821854a28f80c7f4
Autor:
Elena Nicora, Nicoletta Noceti
Publikováno v:
Image Analysis and Processing – ICIAP 2022 ISBN: 9783031064326
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48b72635c065138f3a52863aba5a9917
https://doi.org/10.1007/978-3-031-06433-3_14
https://doi.org/10.1007/978-3-031-06433-3_14