Zobrazeno 1 - 10
of 1 568
pro vyhledávání: '"saddle connections"'
We determine the distribution of the number of saddle connections on a random translation surface of large genus. More specifically, for genus $g$ going to infinity, the number of saddle connections with lengths in a given interval $[\frac{a}{g}, \fr
Externí odkaz:
http://arxiv.org/abs/2412.08727
Autor:
Fu, Kai, Tahar, Guillaume
We consider a flat metric with conical singularities on the sphere. Assuming no partial sum of angle defects is equal to $2\pi$, we draw on the geometry of immersed disks to obtain an explicit upper bound on the number of saddle connections with at m
Externí odkaz:
http://arxiv.org/abs/2308.08940
Autor:
Bonnafoux, Etienne
We prove that the asymptotic number of pairs of saddle connections with length smaller than $L$ with bounded virtual area is quadratic for almost every translation surface with respect to any ergodic $SL(2,\mathbb{R})$-invariant measure. A key tool o
Externí odkaz:
http://arxiv.org/abs/2209.11862
Publikováno v:
Advances in Mathematics, Volume 431, 2023, 109233, ISSN 0001-8708
We show that for almost every translation surface the number of pairs of saddle connections with bounded magnitude of the cross product has asymptotic growth like $c R^2$ where the constant $c$ depends only on the area and the connected component of
Externí odkaz:
http://arxiv.org/abs/2201.08628
Autor:
Berk, Przemysław
The goal of this note is to study the action of the backward Rauzy-Veech algorithm on the translation surfaces with horizontal saddle connections. In particular, we prove that the orbit of a translation surface via the aforementioned algorithm is $\i
Externí odkaz:
http://arxiv.org/abs/2109.13691
Publikováno v:
In Advances in Mathematics 15 October 2023 431
Publikováno v:
Discrete and Continuous Dynamical Systems, 2023, 43(1): 1-56
We explicitly compute the limiting slope gap distribution for saddle connections on any 2n-gon. Our calculations show that the slope gap distribution for a translation surface is not always unimodal, answering a question of Athreya. We also give line
Externí odkaz:
http://arxiv.org/abs/2109.04495
Autor:
Dozier, Benjamin
We prove that any ergodic $SL_2(R)$-invariant probability measure on a stratum of translation surfaces satisfies strong regularity: the measure of the set of surfaces with two non-parallel saddle connections of length at most $\epsilon_1, \epsilon_2$
Externí odkaz:
http://arxiv.org/abs/2002.10026
Autor:
Tahar, Guillaume
Dilation surfaces are generalizations of translation surfaces where the transition maps of the atlas are translations and homotheties with a positive ratio. In contrast with translation surfaces, the directional flow on dilation surfaces may contain
Externí odkaz:
http://arxiv.org/abs/2107.11745
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.