Zobrazeno 1 - 10
of 313
pro vyhledávání: '"s-convex function"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-9 (2024)
Abstract This study establishes Newton-type inequalities for third differentiable and s-convex functions that use the Riemann integral. New Newton-type inequalities are also introduced using a summation parameter p ≥ 1 $p\geq 1$ for various convexi
Externí odkaz:
https://doaj.org/article/304c8254c3e7452aaf39cdd284cdb362
Autor:
Almutairi Ohud Bulayhan
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 675-686 (2023)
In this article, we present new fractional integral inequalities via Euler’s beta function in terms of ss-convex mappings. We develop some new generalizations of fractional trapezoid- and midpoint-type inequalities using the class of differentiable
Externí odkaz:
https://doaj.org/article/6a0b32efca14487292f97a7a5a7fbb14
Publikováno v:
Mathematics, Vol 12, Iss 11, p 1721 (2024)
Integral inequalities are very useful in finding the error bounds for numerical integration formulas. In this paper, we prove some multiplicative integral inequalities for first-time differentiable s-convex functions. These new inequalities help in f
Externí odkaz:
https://doaj.org/article/7f04745b0b9a4eeea6b190ed69abf4bb
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-16 (2023)
Abstract In this work, we established some new general integral inequalities of Hermite–Hadamard type for s-convex functions. To obtain these inequalities, we used the Hölder inequality, power-mean integral inequality, and some generalizations ass
Externí odkaz:
https://doaj.org/article/d3e14689206a48ee89cdc8710fe3a723
Publikováno v:
Fractal and Fractional, Vol 8, Iss 4, p 208 (2024)
Fractional calculus has been a concept used to obtain new variants of some well-known integral inequalities. In this study, our main goal is to establish the new fractional Hermite–Hadamard, and Simpson’s type estimates by employing a differentia
Externí odkaz:
https://doaj.org/article/a48c453249174d60b748b8e388c2de28
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIMS Mathematics, Vol 7, Iss 8, Pp 14282-14298 (2022)
In this paper, a new class of Hermite-Hadamard type integral inequalities using a strong type of convexity, known as n-polynomial exponential type s-convex function, is studied. This class is established by utilizing the Hölder's inequality, which h
Externí odkaz:
https://doaj.org/article/4960fd608f884f6fa4e597a8372f1157
Publikováno v:
AIMS Mathematics, Vol 7, Iss 1, Pp 1429-1444 (2022)
In this paper we establish new Ostrowski type inequalities related to the notion s-$ \varphi $-convex functions (see [37]), were $ f\in C^n([a, b]) $ with $ f^{(n)}\in L([a, b]) $ and we give some applications to some special means, the midpoint form
Externí odkaz:
https://doaj.org/article/01feb99abfea4904a27588e18e86e66b
Publikováno v:
AIMS Mathematics, Vol 7, Iss 4, Pp 5605-5615 (2022)
In this paper, the Ostrowski inequality for s-convex functions in the third sense is studied. By applying Hölder and power mean integral inequalities, the Ostrowski inequality is obtained for the functions, the absolute values of the powers of whose
Externí odkaz:
https://doaj.org/article/f8c4b182a18b4591a011228c5b8f2f5b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.