Zobrazeno 1 - 10
of 10 179
pro vyhledávání: '"rule discovery"'
Autor:
Elhady, Gamal F.1 (AUTHOR) gamal.farouk@ci.menofia.edu.eg, Elwahsh, Haitham2,3 (AUTHOR) haitham.elwahsh@gmail.com, Alsabaan, Maazen4 (AUTHOR) malsabaan@ksu.edu.sa, Ibrahem, Mohamed I.5 (AUTHOR) mibrahem@augusta.edu, Shemis, Ebtesam1 (AUTHOR) eptesam.elhossiny@pg.cu.edu.eg
Publikováno v:
Mathematics (2227-7390). Nov2024, Vol. 12 Issue 22, p3590. 17p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Efficient Open-world Reinforcement Learning via Knowledge Distillation and Autonomous Rule Discovery
Deep reinforcement learning suffers from catastrophic forgetting and sample inefficiency making it less applicable to the ever-changing real world. However, the ability to use previously learned knowledge is essential for AI agents to quickly adapt t
Externí odkaz:
http://arxiv.org/abs/2311.14270
Publikováno v:
International Studies of Economics. Jun2024, Vol. 19 Issue 2, p168-185. 18p.
Publikováno v:
International Studies of Economics, Vol 19, Iss 2, Pp 168-185 (2024)
Abstract This paper examines the potential profit of bull flag trading rules in the Shanghai Stock Exchange Composite Index (SSE) using a template matching technique based on price pattern recognition. This paper fills a gap in the literature by appl
Externí odkaz:
https://doaj.org/article/aa42fd5184524fe09561b159ed0041ce
On e-commerce platforms, predicting if two products are compatible with each other is an important functionality to achieve trustworthy product recommendation and search experience for consumers. However, accurately predicting product compatibility i
Externí odkaz:
http://arxiv.org/abs/2206.13749
Publikováno v:
ACL 2022
Weakly-supervised learning (WSL) has shown promising results in addressing label scarcity on many NLP tasks, but manually designing a comprehensive, high-quality labeling rule set is tedious and difficult. We study interactive weakly-supervised learn
Externí odkaz:
http://arxiv.org/abs/2203.09735
Systematicity, i.e., the ability to recombine known parts and rules to form new sequences while reasoning over relational data, is critical to machine intelligence. A model with strong systematicity is able to train on small-scale tasks and generaliz
Externí odkaz:
http://arxiv.org/abs/2205.06454
While utilization of digital agents to support crucial decision making is increasing, trust in suggestions made by these agents is hard to achieve. However, it is essential to profit from their application, resulting in a need for explanations for bo
Externí odkaz:
http://arxiv.org/abs/2202.01677
Overweight and obesity remain a major global public health concern and identifying the individualized patterns that increase the risk of future weight gains has a crucial role in preventing obesity and numerous sub-sequent diseases associated with ob
Externí odkaz:
http://arxiv.org/abs/2111.04475