Zobrazeno 1 - 10
of 481
pro vyhledávání: '"root mean squared error"'
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Abstract This study aims to explore the research methodology of applying the Transformer model algorithm to Chinese word sense disambiguation, seeking to resolve word sense ambiguity in the Chinese language. The study introduces deep learning and des
Externí odkaz:
https://doaj.org/article/62a02354bfe345e7907b9f95f1240fc1
Publikováno v:
Journal of Water and Land Development, Iss No 57, Pp 1-8 (2023)
Artificial neural network models (ANNs) were used in this study to predict reference evapotranspiration ( ETo) using climatic data from the meteorological station at the test station in Kafr El-Sheikh Governorate as inputs and reference evaporation v
Externí odkaz:
https://doaj.org/article/2aac4df4e0844e6ab436480c290c443f
Autor:
Shubham Kanojiya, Gopal Krishna Mehta
Publikováno v:
AiBi Revista de Investigación, Administración e Ingeniería, Vol 12, Iss 1 (2024)
Ground deformation during tunneling projects is one of the complicated concerns that must be constantly monitored to prevent unanticipated damages and human losses. In addition to conventional approaches, several intelligent methods, like ANN, have r
Externí odkaz:
https://doaj.org/article/d6dbed25b2bd47efb9ff76d30f069ae0
Autor:
Dayane Cristina Lima, Jacob D. Washburn, José Ignacio Varela, Qiuyue Chen, Joseph L. Gage, Maria Cinta Romay, James Holland, David Ertl, Marco Lopez-Cruz, Fernando M. Aguate, Gustavo de los Campos, Shawn Kaeppler, Timothy Beissinger, Martin Bohn, Edward Buckler, Jode Edwards, Sherry Flint-Garcia, Michael A. Gore, Candice N. Hirsch, Joseph E. Knoll, John McKay, Richard Minyo, Seth C. Murray, Osler A. Ortez, James C. Schnable, Rajandeep S. Sekhon, Maninder P. Singh, Erin E. Sparks, Addie Thompson, Mitchell Tuinstra, Jason Wallace, Teclemariam Weldekidan, Wenwei Xu, Natalia de Leon
Publikováno v:
BMC Research Notes, Vol 16, Iss 1, Pp 1-3 (2023)
Abstract Objectives The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generat
Externí odkaz:
https://doaj.org/article/48a1287735cb44248e70c60cec86cc93
Publikováno v:
Jurnal Riset Informatika, Vol 5, Iss 1, Pp 555-564 (2022)
Information technology supports the company's operational activities in recording incoming goods, outgoing goods, and existing inventory. PT. Mitraniaga Distribusindo is a company engaged in food distribution, which includes supporting aspects for sm
Externí odkaz:
https://doaj.org/article/44feecd6bd584f929023f5bc636cb3ea
Autor:
Farshad Jafarizadeh, Meysam Rajabi, Somayeh Tabasi, Reza Seyedkamali, Shadfar Davoodi, Hamzeh Ghorbani, Mehdi Ahmadi Alvar, Ahmed E. Radwan, Mako Csaba
Publikováno v:
Energy Reports, Vol 8, Iss , Pp 6551-6562 (2022)
The mud weight window (MW) determination is one of the most important parameters in drilling oil and gas wells, where accurate design can secure the drilled well and deliver a stable borehole. In this paper, novel algorithms based on the most influen
Externí odkaz:
https://doaj.org/article/d0c12e8a198248849ce7926181db6227
Autor:
Burhan U Din Abdullah, Shahbaz Ahmad Khanday, Nair Ul Islam, Suman Lata, Hoor Fatima, Sarvar Hussain Nengroo
Publikováno v:
Energies, Vol 17, Iss 7, p 1564 (2024)
Effective machine learning regression models are useful toolsets for managing and planning energy in PV grid-connected systems. Machine learning regression models, however, have been crucial in the analysis, forecasting, and prediction of numerous pa
Externí odkaz:
https://doaj.org/article/e64eaf5c8bb44102a8b9100300117474
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Leah Fostick, Nir Fink
Publikováno v:
Sensors, Vol 23, Iss 23, p 9434 (2023)
The literature offers various methods for measuring sound localization. In this study, we aimed to compare these methods to determine their effectiveness in addressing different research questions by examining the effect sizes obtained from each meas
Externí odkaz:
https://doaj.org/article/70a8501820f84237bd5a64367c4730ef