Zobrazeno 1 - 10
of 1 193
pro vyhledávání: '"renewal functions"'
Autor:
Sgibnev, M. S.
Publikováno v:
Journal of Applied Probability, 1996 Jun 01. 33(2), 434-438.
Externí odkaz:
https://www.jstor.org/stable/3215067
Publikováno v:
JTAM (Jurnal Teori dan Aplikasi Matematika), Vol 4, Iss 1, Pp 49-55 (2020)
An important aspect in the provision of a two-dimensional warranty is the expected number of failures of a component during the two-dimensional warranty period. The purpose of this paper is to present a new method to obtain the expected number of fai
Externí odkaz:
https://doaj.org/article/a9fbc173f61442e29d05da9f41b2e0f9
Autor:
Omey, Edward, Teugels, Jef L.
Publikováno v:
Advances in Applied Probability, 2002 Jun 01. 34(2), 394-415.
Externí odkaz:
https://www.jstor.org/stable/1428294
Autor:
Clément, Dombry, Landy, Rabehasaina
Publikováno v:
The Annals of Applied Probability, 2017 Aug 01. 27(4), 2342-2382.
Externí odkaz:
https://www.jstor.org/stable/26361549
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dombry, Clément, Rabehasaina, Landy
A high order expansion of the renewal function is provided under the assumption that the inter-renewal time distribution is light tailed with finite moment generating function g on a neighborhood of 0. This expansion relies on complex analysis and is
Externí odkaz:
http://arxiv.org/abs/1611.09197
For a numerical sequence ${a_n}$ satisfying broad assumptions on its "behaviour on average" and a random walk $S_n=\xi_1 +...+\xi_n$ with i.i.d. jumps $\xi_j$ with positive mean $\mu$, we establish the asymptotic behaviour of the sums [\sum_{n\ge 1}
Externí odkaz:
http://arxiv.org/abs/1201.0836
Autor:
Lin, Jianxi
Publikováno v:
Journal of Applied Probability, 2008 Dec 01. 45(4), 972-993.
Externí odkaz:
https://www.jstor.org/stable/27596003
Autor:
Yu, Yaming
Publikováno v:
Journal of Applied Probability 48 (2011) 583-588
Brown (1980, 1981) proved that the renewal function is concave if the inter-renewal distribution is DFR (decreasing failure rate), and conjectured the converse. This note settles Brown's conjecture with a class of counter-examples. We also give a sho
Externí odkaz:
http://arxiv.org/abs/1009.2463
Autor:
YU, YAMING
Publikováno v:
Journal of Applied Probability, 2011 Jun 01. 48(2), 583-588.
Externí odkaz:
https://www.jstor.org/stable/23065905