Zobrazeno 1 - 10
of 102
pro vyhledávání: '"recurrent convolutional network"'
Autor:
Md. Ashraf Uddin, Md. Alamin Talukder, Muhammad Sajib Uzzaman, Chandan Debnath, Moumita Chanda, Souvik Paul, Md. Manowarul Islam, Ansam Khraisat, Ammar Alazab, Sunil Aryal
Publikováno v:
International Journal of Cognitive Computing in Engineering, Vol 5, Iss , Pp 259-268 (2024)
Human activity recognition (HAR) plays a crucial role in assisting the elderly and individuals with vascular dementia by providing support and monitoring for their daily activities. This paper presents a deep learning (DL)-based approach to HAR, leve
Externí odkaz:
https://doaj.org/article/c7992cded3cd4885a865617103179814
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 2, Pp 1844-1856 (2024)
Liver rupture repair surgery serves as one tool to treat liver rupture, especially beneficial for cases of mild liver rupture hemorrhage. Liver rupture can catalyze critical conditions such as hemorrhage and shock. Surgical workflow recognition in li
Externí odkaz:
https://doaj.org/article/b69afd14a6944d93a5b81c32f587963a
Publikováno v:
Sensors, Vol 24, Iss 19, p 6388 (2024)
This paper investigates the feasibility of cross-domain recognition for human activities captured using low-resolution 8 × 8 infrared sensors in indoor environments. To achieve this, a novel prototype recurrent convolutional network (PRCN) was evalu
Externí odkaz:
https://doaj.org/article/5bd94185fbca49e9ac6f0cdff7696093
Publikováno v:
Applied Sciences, Vol 14, Iss 17, p 7985 (2024)
With the rapid increase in the number of drivers, traffic accidents due to driver distraction is a major threat around the world. In this paper, we present a novel long-term recurrent convolutional network (LRCN) model for real-time driver activity r
Externí odkaz:
https://doaj.org/article/ca8dfe9481744dd5b465e10446651f21
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Access, Vol 9, Pp 144756-144767 (2021)
The performance of multi-exposure image fusion (MEF) has been recently improved with deep learning techniques but there are still a couple of problems to be overcome. In this paper, we propose a novel MEF network based on recurrent neural network (RN
Externí odkaz:
https://doaj.org/article/1a6a47c49139407c80fdeada2668a57c
Autor:
Md. Milon Islam, Omar Tayan, Md. Repon Islam, Md. Saiful Islam, Sheikh Nooruddin, Muhammad Nomani Kabir, Md. Rabiul Islam
Publikováno v:
IEEE Access, Vol 8, Pp 166117-166137 (2020)
Accidental falls are a major source of loss of autonomy, deaths, and injuries among the elderly. Accidental falls also have a remarkable impact on the costs of national health systems. Thus, extensive research and development of fall detection and re
Externí odkaz:
https://doaj.org/article/e1e127d5449f4fbcb7f212f5c8654489
Publikováno v:
IEEE Access, Vol 8, Pp 203134-203145 (2020)
Rain removal in videos is a problem that has attracted tremendous interest of researchers within the field of deep learning. Although deep-learning-based rain removal methods outperform large number of conventional vision methods, some technical issu
Externí odkaz:
https://doaj.org/article/333bbb5577aa4e0c965a9b12bacdc692