Zobrazeno 1 - 10
of 50 058
pro vyhledávání: '"reaction–diffusion equations"'
Autor:
Phan Van Long Em1 pvlem@agu.edu.vn
Publikováno v:
Advanced Mathematical Models & Applications. 2024, Vol. 9 Issue 3, p401-407. 7p.
Autor:
Wen, Hao1 (AUTHOR) wh_mos@163.com, Wang, Yuanjing1 (AUTHOR), Liu, Guangyuan1 (AUTHOR), Liu, Dawei1 (AUTHOR) liudawei@mail.ustc.edu.cn
Publikováno v:
Mathematics (2227-7390). May2024, Vol. 12 Issue 9, p1284. 13p.
Autor:
Ambrosio, B.1,2 (AUTHOR) aziz.alaoui@univ-lehavre.fr, Aziz-Alaoui, M. A.1 (AUTHOR), Oujbara, A.1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). May2024, Vol. 12 Issue 9, p1382. 14p.
Autor:
Cui, Jianbo, Wang, Feng-Yu
In the study of geometric surface evolutions, stochastic reaction-diffusion equation provides a powerful tool for capturing and simulating complex dynamics. A critical challenge in this area is developing numerical approximations that exhibit error b
Externí odkaz:
http://arxiv.org/abs/2412.12604
We study the exchange of stability in scalar reaction-diffusion equations which feature a slow passage through transcritical and pitchfork type singularities in the reaction term, using a novel adaptation of the geometric blow-up method. Our results
Externí odkaz:
http://arxiv.org/abs/2411.13679
In this paper, we study a multi-objective inverse initial problem with a Nash strategy constraint for forward stochastic reaction-diffusion equations with dynamic boundary conditions, where both the volume and surface equations are influenced by rand
Externí odkaz:
http://arxiv.org/abs/2410.10007
Autor:
Roberts, Timothy, Sandstede, Bjorn
We apply spatial dynamical-systems techniques to prove that certain spatiotemporal patterns in reversible reaction-diffusion equations undergo snaking bifurcations. That is, in a narrow region of parameter space, countably many branches of patterned
Externí odkaz:
http://arxiv.org/abs/2410.02621
Non-linear convection-reaction-diffusion (CRD) partial differential equations (PDEs) are crucial for modeling complex phenomena in fields such as biology, ecology, population dynamics, physics, and engineering. Numerical approximation of these non-li
Externí odkaz:
http://arxiv.org/abs/2411.09704
Autor:
Miller, Thomas, Tam, Alexander K. Y., Marangell, Robert, Wechselberger, Martin, Bradshaw-Hajek, Bronwyn H.
We consider a general reaction--nonlinear-diffusion equation with a region of negative diffusivity, and show how a nonlinear regularisation selects a shock position. Negative diffusivity can model population aggregation, but leads to shock-fronted so
Externí odkaz:
http://arxiv.org/abs/2410.04106