Zobrazeno 1 - 10
of 9 316
pro vyhledávání: '"rational surface"'
Autor:
Mendes, Luís Gustavo, Puchuri, Liliana
The blown up complex projective plane in the twelve triple points of the dual Hesse arrangement has an infinite number of irreducible rational curves of self-intersection $-1$, for short, $(-1)$-curves. In the preprint version of [Dumnicki, 2019], T.
Externí odkaz:
http://arxiv.org/abs/2409.19235
Autor:
Jiang, Qitong
We consider a one-dimensional family of rational surfaces with automorphisms. In a degeneration of this family, the limiting map is the identity map on a special fiber. We check that the map on the total space of the family has indeterminacy in the s
Externí odkaz:
http://arxiv.org/abs/2407.20896
Autor:
Kim, Kyounghee
Let $\{F_n, n\ge 8\}$ be a family of diffeomorphisms on real rational surfaces that are birationally equivalent to birational maps on $\mathbf{P}^2(\mathbb{R})$. In this article, we investigate the mapping classes of the diffeomorphisms $F_n, n\ge 8$
Externí odkaz:
http://arxiv.org/abs/2407.15075
Autor:
Kim, Kyounghee1 (AUTHOR)
Publikováno v:
Conformal Geometry & Dynamics. 5/31/2024, Vol. 28, p62-87. 26p.
Autor:
Wakamaki, Yohei
Publikováno v:
In Topology and its Applications 1 September 2024 354
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wakamaki, Yohei
Publikováno v:
Topology and its Applications 354 (2024), 109002
We provide the first explicit example of a cork of $\mathbf{CP}^2 \# 8\overline{\mathbf{CP}^2}$. This result gives the current smallest second Betti number of a standard simply-connected closed $4$-manifold for which an explicit cork has been found.<
Externí odkaz:
http://arxiv.org/abs/2307.16454
Autor:
Kim, Kyounghee
The induced action on the Picard group of a rational surface automorphism with positive entropy can be identified with an element of the Coxeter group associated to $E_n, n\ge 10$ diagram. It follows that the set of dynamical degrees of rational surf
Externí odkaz:
http://arxiv.org/abs/2211.09662
Autor:
Krah, Johannes
Publikováno v:
Invent. math. 235, 1009-1018 (2024)
We construct a non-full exceptional collection of maximal length consisting of line bundles on the blow-up of the projective plane in 10 points in general position. This provides a counterexample to a conjecture of Kuznetsov and to a conjecture of Or
Externí odkaz:
http://arxiv.org/abs/2304.01269