Zobrazeno 1 - 10
of 912
pro vyhledávání: '"quaternionic matrices"'
Autor:
Friedland, Shmuel
We give a semidefinite programming characterizations of the numerical radius and its dual norm for quaternionic matrices. We show that the computation of the numerical radius and its dual norm within $\varepsilon$ precision are polynomially time comp
Externí odkaz:
http://arxiv.org/abs/2311.01629
We study the Rayleigh quotient of a Hermitian matrix with quaternionic coefficients and prove its main properties. As an application, we give some relationships between left and right eigenvalues of Hermitian and symplectic matrices.
Comment: 14
Comment: 14
Externí odkaz:
http://arxiv.org/abs/2012.03621
We provide a sufficient condition for the numerical range of a nilpotent matrix N to be circular in terms of the existence of cycles in an undirected graph associated with N. We prove that if we add to this matrix N a diagonal real matrix D, the matr
Externí odkaz:
http://arxiv.org/abs/1907.13438
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ali, I.1 (AUTHOR) iaansari1986@gmail.com
Publikováno v:
Ukrainian Mathematical Journal. Nov2020, Vol. 72 Issue 6, p837-852. 16p.
Autor:
Pakharev, A., Skopenkov, M.
Publikováno v:
Uspekhi Mat. Nauk, 72:2(434) (2017), 195-196; Russian Math. Surveys, 72:2 (2017), 381-383
We find all analytic surfaces in space R^3 such that through each point of the surface one can draw two circular arcs fully contained in the surface. The proof uses a new decomposition technique for quaternionic matrices.
Comment: in English and
Comment: in English and
Externí odkaz:
http://arxiv.org/abs/1510.06510
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Erdoğdu, Melek, Özdemir, Mustafa
Publikováno v:
In Applied Mathematics and Computation 15 December 2017 315:468-476
Autor:
Macías-Virgós, E., Pereira-Sáez, M. J.
It is known that a $2\times 2$ quaternionic matrix has one, two or an infinite number of left eigenvalues, but the available algebraic proofs are difficult to generalize to higher orders. In this paper a different point of view is adopted by computin
Externí odkaz:
http://arxiv.org/abs/1210.3009
We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance $1/n$. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension $n$ goes to infinit
Externí odkaz:
http://arxiv.org/abs/1104.4455