Zobrazeno 1 - 10
of 218
pro vyhledávání: '"quasilinear schrödinger equations"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 − Δ p u + V ( x ) | u | p − 2 u − Δ p ( | u | 2 α ) | u
Externí odkaz:
https://doaj.org/article/0c558e22a77743658a705cbb419ad40a
Publikováno v:
AIMS Mathematics, Vol 8, Iss 8, Pp 19566-19581 (2023)
In our current work we investigate the following critical quasilinear Schrödinger equation $ -\Delta \Theta+\mathcal V(x)\Theta-\Delta (\Theta^2)\Theta = |\Theta|^{22^*-2}\Theta+\lambda \mathcal K(x)g(\Theta), \ x \ \in \mathbb R^N, $ where $
Externí odkaz:
https://doaj.org/article/c085f4301d9242b29c76fedaf71707d5
Autor:
Xian Zhang, Chen Huang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2022, Iss 64, Pp 1-28 (2022)
This paper establishes the multiplicity of solutions for a class of quasilinear Schrödinger elliptic equations: \begin{equation*} -\Delta u+V(x)u-\frac{\gamma}{2}\Delta(u^{2})u=f(x,u),\qquad x\in \mathbb{R}^{3}, \end{equation*} where $V(x):\mathbb{R
Externí odkaz:
https://doaj.org/article/17013efe4569482486ca2ab37e127833
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2022, Iss 58, Pp 1-8 (2022)
This paper is concerned with the following quasilinear Schrödinger equations of the form: \begin{equation*} -\Delta u-u\Delta (u^2)+u=|u|^{p-2}u, \qquad x\in \mathbb{R}^3, \end{equation*} where $p\in\left(2,12\right)$. By making use of the constrain
Externí odkaz:
https://doaj.org/article/9ad83ec843204412a575065fab90e459
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Physics, Vol 11 (2023)
In this paper, we consider the non-existence and existence of solutions for a generalized quasilinear Schrödinger equation with a Kirchhoff-type perturbation. When the non-linearity h(u) shows critical or supercritical growth at infinity, the non-ex
Externí odkaz:
https://doaj.org/article/7d64761238d041249b5cf73bf3d1ea60
Autor:
Shulin Zhang
Publikováno v:
AIMS Mathematics, Vol 7, Iss 1, Pp 1015-1034 (2022)
In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. C
Externí odkaz:
https://doaj.org/article/dc5c941f50e5462090b7cbc1c9075857
Publikováno v:
AIMS Mathematics, Vol 7, Iss 4, Pp 6565-6582 (2022)
This paper deals with a class of supercritical quasilinear Schrödinger equations $ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $ where $ \kappa\geq2, \; N\geq3, \; \lambda >
Externí odkaz:
https://doaj.org/article/f8a66f70928245b984cd808cfd385aa2
Autor:
Zhu Wenjie, Chen Chunfang
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 1746-1754 (2021)
In this paper, we consider the following quasilinear Schrödinger equation: −Δu+V(x)u+κ2Δ(u2)u=K(x)f(u),x∈RN,-\Delta u+V\left(x)u+\frac{\kappa }{2}\Delta \left({u}^{2})u=K\left(x)f\left(u),\hspace{1.0em}x\in {{\mathbb{R}}}^{N}, where N≥3N\ge
Externí odkaz:
https://doaj.org/article/540822aaa10c4069b7fcef0c80701956