Zobrazeno 1 - 10
of 662
pro vyhledávání: '"q)$-Laplacian"'
We investigate a nonlinear nonlocal eigenvalue problem involving the sum of fractional $(p,q)$-Laplace operators $(-\Delta)_p^{s_1}+(-\Delta)_q^{s_2}$ with $s_1,s_2\in (0,1)$; $p,q\in(1,\infty)$ and subject to Dirichlet boundary conditions in an open
Externí odkaz:
http://arxiv.org/abs/2406.15825
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 48, Pp 1-19 (2024)
This paper considers the existence of multiple normalized solutions of the following $(2,q)$-Laplacian equation: \begin{equation*} \begin{cases} -\Delta u-\Delta_q u=\lambda u+h(\epsilon x)f(u), &\mathrm{in}\ \mathbb{R}^{N},\\ \int_{\mathbb{R}^{N}
Externí odkaz:
https://doaj.org/article/bef207812b0246c3b1f421305cb15370
Autor:
Bandar Alreshidi, Dang Dinh Hai
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 32, Pp 1-5 (2024)
We show the existence of a positive solution to the $(p,q)$-Laplacian problem \begin{equation*} \begin{cases} -\Delta _{p}u-a\Delta _{q}u=\lambda f(u)-h(x)\quad \text{in }\Omega, \\ u=0\quad \text{on }\partial \Omega, \end{cases} \end{equation*} for
Externí odkaz:
https://doaj.org/article/9ebae7b498ef428e85b9066ec893886c
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-15 (2024)
Abstract In this paper, we deal with the following fractional p & q $p\&q$ -Laplacian problem: { ( − Δ ) p s u + ( − Δ ) q s u = λ a ( x ) | u | θ − 2 u + μ b ( x ) | u | r − 2 u in Ω , u ( x ) = 0 in R N ∖ Ω , $$ \left \{ \textstyle
Externí odkaz:
https://doaj.org/article/3e66a1b23baf48438f37f4a9d3494f2f
Autor:
Kattan, Doha A. a, Hammad, Hasanen A. b, ⁎
Publikováno v:
In Ain Shams Engineering Journal February 2025 16(2)
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 32, Iss 1, Pp 45-64 (2024)
Let Ω ⊂ ℝN, N ≥ 2, be a bounded domain with smooth boundary ∂Ω. Consider the following generalized Robin-Steklov eigenvalue problem associated with the operator 𝒜u = − Δpu − Δqu {𝒜u+ρ1(x)|u|p-2u+ρ2(x)|u|q-2u=λα(x)|u|r-2u, x
Externí odkaz:
https://doaj.org/article/0927dd18bf3d40e6a4cc494a664e9ce4
Autor:
Ambrosio Vincenzo
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 2, Pp 510-541 (2024)
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u
Externí odkaz:
https://doaj.org/article/01d6d19a9628412fbffa540f7bc6f7e5
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-23 (2024)
Abstract We investigate a generalized poly-Laplacian system with a parameter on weighted finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet boundary value on weighted locally finite graphs, and a ( p , q ) $(p,q)$ -Lapl
Externí odkaz:
https://doaj.org/article/609a5962c1b3429fbc5c36c5a8b6d5a0
Publikováno v:
Axioms, Vol 13, Iss 11, p 762 (2024)
In this paper, we consider the (p,q)-Laplacian Choquard equation on a finite weighted lattice graph G=(KN,E,μ,ω), namely for any 1
1 and 0<α
Externí odkaz:
https://doaj.org/article/38a98f476e2d45a6bd4fce8d3840b787
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 1, Pp 1-23 (2024)
In this paper we consider a class of anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with nonlinear right-hand sides that are superlinear at $ \pm\infty $. We prove the existence of two nontrivial weak solutions to this kind of problem by apply
Externí odkaz:
https://doaj.org/article/c143047673ef4bf5ae7896af7a77391a