Zobrazeno 1 - 4
of 4
pro vyhledávání: '"public release [software]"'
Autor:
Mike Walmsley, Anna M M Scaife, Chris Lintott, Michelle Lochner, Verlon Etsebeth, Tobias Géron, Hugh Dickinson, Lucy Fortson, Sandor Kruk, Karen L Masters, Kameswara Bharadwaj Mantha, Brooke D Simmons
Publikováno v:
Walmsley, M, Scaife, A M M, Lintott, C J, Lochner, M, Etsebeth, V, Géron, T, Dickinson, H, Fortson, L, Kruk, S, Masters, K L, Mantha, K B & Simmons, B D 2022, ' Practical galaxy morphology tools from deep supervised representation learning ', Monthly Notices of the Royal Astronomical Society, vol. 513, no. 2, pp. 1581-1599 . https://doi.org/10.1093/mnras/stac525
Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic repres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70b310338d206eb57ff81325f592a38b
https://research.manchester.ac.uk/en/publications/1f1e471b-bb36-4204-abf1-d08c8f8685c9
https://research.manchester.ac.uk/en/publications/1f1e471b-bb36-4204-abf1-d08c8f8685c9
Autor:
A. A. Plazas, L. N. Da Costa, W. G. Hartley, Maria E. S. Pereira, Brian Yanny, Marcos Lima, Alex Drlica-Wagner, J. Carretero, Antonella Palmese, E. M. Huff, Juan Garcia-Bellido, Ramon Miquel, M. A. G. Maia, Michel Aguena, V. Scarpine, A. Choi, Martin Crocce, F. J. Castander, G. Tarle, R. D. Wilkinson, Ian Harrison, S. Mucesh, K. Honscheid, Sunayana Bhargava, A. Alarcon, J. De Vicente, David J. James, Huan Lin, Pablo Fosalba, M. Carrasco Kind, Chun-Hao To, Alexandra Amon, E. J. Sanchez, F. Paz-Chinchón, Keith Bechtol, E. Suchyta, August E. Evrard, M. Costanzi, M. Smith, Felipe Menanteau, Josh Frieman, D. L. Hollowood, S. Allam, Robert A. Gruendl, S. Serrano, Ofer Lahav, Daniel Gruen, Samuel Hinton, Peter Melchior, Christopher J. Conselice, Erin Sheldon, B. Flaugher, E. Bertin, G. Gutierrez, David J. Brooks, S. Desai, Enrique Gaztanaga, Robert Morgan, J. Gschwend, S. Everett, D. W. Gerdes, Gary Bernstein, I. Ferrero, H. T. Diehl, David Bacon, I. Sevilla-Noarbe, N. Kuropatkin, K. D. Eckert, T. N. Varga, Asa F. L. Bluck, Kyler Kuehn, Michael Schubnell, Daniel Thomas, L. Whiteway, A. Carnero Rosell
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2021, 502 (2), pp.2770-2786. ⟨10.1093/mnras/stab164⟩
instname
Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2021, 502 (2), pp.2770-2786. ⟨10.1093/mnras/stab164⟩
We demonstrate that highly accurate joint redshift-stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0add389f63fe84f402892cf19a676f5d
http://hdl.handle.net/10261/262803
http://hdl.handle.net/10261/262803
Publikováno v:
Monthly Notices of the Royal Astronomical Society, vol 498, iss 3
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, vol 498, iss 3
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, vol 498, iss 3
This paper presents a catalogue of optimized pointings for differential photometry of 23 779 quasars extracted from the Sloan Digital Sky Survey (SDSS) Catalogue and a Score for each indicating the quality of the Field of View (FoV) associated with t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::689621c0353a50a6d7f952a990985eac
https://escholarship.org/uc/item/2fm4b6rg
https://escholarship.org/uc/item/2fm4b6rg
Autor:
Mark L A Richardson, Laurence Routledge, Niranjan Thatte, Matthias Tecza, Ryan C W Houghton, Miguel Pereira-Santaella, Dimitra Rigopoulou
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
DIGITAL.INTA Repositorio Digital del Instituto Nacional de Técnica Aeroespacial
Instituto Nacional de Técnica Aeroespacial (INTA)
instname
DIGITAL.INTA Repositorio Digital del Instituto Nacional de Técnica Aeroespacial
Instituto Nacional de Técnica Aeroespacial (INTA)
We present simulated observations of gas kinematics in galaxies formed in 10 pc resolution cosmological simulations with the hydrodynamical + N-body code RAMSES, using the new RAMSES2HSIM pipeline with the simulated observing pipeline (HSIM) for the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ae3be3d4f74ed8f68e060937ce73a53
http://hdl.handle.net/10261/234163
http://hdl.handle.net/10261/234163