Zobrazeno 1 - 10
of 180
pro vyhledávání: '"protein structure networks"'
Autor:
Vasundhara Gadiyaram, Vasam Manjveekar Prabantu, Arinnia Anto Manjaly, Ananth Muthiah, Saraswathi Vishveshwara
Publikováno v:
Current Research in Structural Biology, Vol 7, Iss , Pp 100147- (2024)
The function of a protein is most of the time achieved due to minute conformational changes in its structure due to ligand binding or environmental changes or other interactions. Hence the analysis of structure of proteins should go beyond the analys
Externí odkaz:
https://doaj.org/article/543e27fd4a7b4f9d939908b3670a2073
Publikováno v:
Computational and Structural Biotechnology Journal, Vol 20, Iss , Pp 640-649 (2022)
Structure graphs, in which interacting amino acids/nucleotides correspond to linked nodes, represent cutting-edge tools to investigate macromolecular function.The graph-based approach defined as Protein Structure Network (PSN) was initially implement
Externí odkaz:
https://doaj.org/article/fcb9325d99f64da99b0e2dfd21de0de6
Connecting the dots: A practical evaluation of web-tools for describing protein dynamics as networks
Autor:
Francesco Petrizzelli, Tommaso Biagini, Salvatore Daniele Bianco, Niccolò Liorni, Alessandro Napoli, Stefano Castellana, Tommaso Mazza
Publikováno v:
Frontiers in Bioinformatics, Vol 2 (2022)
Protein Structure Networks (PSNs) are a well-known mathematical model for estimation and analysis of the three-dimensional protein structure. Investigating the topological architecture of PSNs may help identify the crucial amino acid residues for pro
Externí odkaz:
https://doaj.org/article/f537d5cfa3674327a6c6a6eb5f15100d
Publikováno v:
Computational and Structural Biotechnology Journal, Vol 18, Iss , Pp 749-764 (2020)
DNA methyltransferase 1 (DNMT1), a large multidomain enzyme, is believed to be involved in the passive transmission of genomic methylation patterns via methylation maintenance. Yet, the molecular mechanism of interaction networks underlying DNMT1 str
Externí odkaz:
https://doaj.org/article/dde4dae808384a118044408674c1a125
Publikováno v:
Frontiers in Molecular Biosciences, Vol 7 (2021)
The interactions between residues in a protein tertiary structure can be studied effectively using the approach of protein structure network (PSN). A PSN is a node-edge representation of the structure with nodes representing residues and interactions
Externí odkaz:
https://doaj.org/article/272bce9c1edc4763bfaa000d581bbd6b
Publikováno v:
Royal Society Open Science, Vol 7, Iss 6 (2020)
Experimental determination of protein function is resource-consuming. As an alternative, computational prediction of protein function has received attention. In this context, protein structural classification (PSC) can help, by allowing for determini
Externí odkaz:
https://doaj.org/article/66dd788a06d841858dc74dc6458454f1
Publikováno v:
Biomolecules, Vol 11, Iss 12, p 1788 (2021)
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly u
Externí odkaz:
https://doaj.org/article/365b927f285646e79a284277e3bff8a2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Markus Schneider, Iris Antes
Publikováno v:
Proteins: Structure, Function, and Bioinformatics. 91:237-255
The heat shock protein 70 kDa (Hsp70) chaperone system serves as a critical component of protein quality control across a wide range of prokaryotic and eukaryotic organisms. Divergent evolution and specialization to particular organelles have produce
Publikováno v:
Frontiers in Molecular Biosciences, Vol 6 (2019)
Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to comparative analysis, prominently including highly dynamic conformational states and a lack of well-defined secondary structure. Machine learning (ML) algorithms are
Externí odkaz:
https://doaj.org/article/862dfca318da487bae97e786d72f22ad