Zobrazeno 1 - 10
of 619
pro vyhledávání: '"primorial"'
Autor:
Axler, Christian
Let $\varphi(n)$ denote the Euler totient function. In this paper, we first establish a new upper bound for $n/\varphi(n)$ involving $K(n)$, the function that counts the number of primorials not exceeding $n$. In particular, this leads to an answer t
Externí odkaz:
http://arxiv.org/abs/2406.04018
In this paper, we study a class of functions defined recursively on the set of natural numbers in terms of the greatest common divisor algorithm of two numbers and requiring a minimality condition. These functions are permutations, products of infini
Externí odkaz:
http://arxiv.org/abs/2302.02838
Autor:
Gomez, Jonatan
Counting the number of prime numbers up to a certain natural number and describing the asymptotic behavior of such a counting function has been studied by famous mathematicians like Gauss, Legendre, Dirichlet, and Euler. The prime number theorem dete
Externí odkaz:
http://arxiv.org/abs/2301.03586
Autor:
Gomez, Jonatan
Prime numbers have attracted the attention of mathematiciansand enthusiasts for millenniums due to their simple definition and remarkable properties. In this paper, we study primorial numbers (the product of the first prime numbers) to define primori
Externí odkaz:
http://arxiv.org/abs/2301.02770
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Raman, Vignesh
This paper introduces a new generalized superfactorial function (referable to as $n^{th}$- degree superfactorial: $sf^{(n)}(x)$) and a generalized hyperfactorial function (referable to as $n^{th}$- degree hyperfactorial: $H^{(n)}(x)$), and we show th
Externí odkaz:
http://arxiv.org/abs/2012.00882
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ozsari, Turker
I give some claims on primorial prime numbers for interested readers in number theory.
Comment: 2 pages
Comment: 2 pages
Externí odkaz:
http://arxiv.org/abs/math/0310412
Autor:
Ohad, Manor
a primorial Series - an early Version.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1289313cbb281d2eb99ef9b33c9c410b
Autor:
Ohad, Manor
By analyzing the nature of the Primorial using the invariance of the prime ring, it is possible to classify it as a scalar function. Such a function has a gradient which is a covariant vector. The primorial is time invariant for independent interacti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf4614fb14b5a928d1922c7ee35cc18f