Zobrazeno 1 - 4
of 4
pro vyhledávání: '"primary 53c25, 53d35"'
Publikováno v:
J. Differential Geom. 101 (2015), 47-66
We prove that on a compact Sasakian manifold $(M, \eta, g)$ of dimension $2n+1$, for any $0 \le p \le n$ the wedge product with $\eta \wedge (d\eta)^p$ defines an isomorphism between the spaces of harmonic forms $\Omega^{n-p}_\Delta (M)$ and $\Omega^
Externí odkaz:
http://arxiv.org/abs/1306.2896
Publikováno v:
Complex Manifolds, Vol 6, Iss 1, Pp 320-334 (2019)
We provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.
Externí odkaz:
https://doaj.org/article/ae67d9dad9d3420296841cd34cc7edaa
Publikováno v:
Complex Manifolds, Vol 6, Iss 1, Pp 320-334 (2019)
We provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.
Comment: 17 pages
Comment: 17 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e18923c1a7d334c112211bd42d77ef8
Publikováno v:
Scopus-Elsevier
J. Differential Geom. 101, no. 1 (2015), 47-66
J. Differential Geom. 101, no. 1 (2015), 47-66
We prove that on a compact Sasakian manifold $(M, \eta, g)$ of dimension $2n+1$, for any $0 \le p \le n$ the wedge product with $\eta \wedge (d\eta)^p$ defines an isomorphism between the spaces of harmonic forms $\Omega^{n-p}_\Delta (M)$ and $\Omega^
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5409c008d9c36d91cafadfa2a629de7