Zobrazeno 1 - 10
of 30
pro vyhledávání: '"primary 35j62"'
Autor:
Gluck, Mathew
In this work we consider a system of quasilinear elliptic equations driven by an anisotropic $p$-Laplacian. The lower-order nonlinearities are in potential form and exhibit critical Sobolev growth. We exhibit conditions on the coefficients of the dif
Externí odkaz:
http://arxiv.org/abs/2312.17737
Given two continuous functions $V\left(r \right)\geq 0$ and $K\left(r\right)> 0$ ($r>0$), which may be singular or vanishing at zero as well as at infinity, we study the quasilinear elliptic equation \[ -\Delta w+ V\left( \left| x\right| \right) w -
Externí odkaz:
http://arxiv.org/abs/2202.01872
Autor:
Congreve, Scott, Houston, Paul
This article considers the extension of two-grid $hp$-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems of monotone type to the case when agglomerated po
Externí odkaz:
http://arxiv.org/abs/2112.04540
Autor:
Creo, Simone
We consider a quasi-linear homogenization problem in a two-dimensional pre-fractal domain $\Omega_n$, for $n\in\mathbb{N}$, surrounded by thick fibers of amplitude $\varepsilon$. We introduce a sequence of "pre-homogenized" energy functionals and we
Externí odkaz:
http://arxiv.org/abs/2107.12215
Autor:
Wang, Weihua
This paper is concerned with the multiplicity results to a class of $p$-Kirchhoff type elliptic equation with the homogeneous Neumann boundary conditions by an abstract linking lemma due to Br\'{e}zis and Nirenberg. We obtain the twofold results in s
Externí odkaz:
http://arxiv.org/abs/2107.05167
Publikováno v:
Adv. Calc. Var. 13:4 (2020), 385-401
This paper deals with the existence of multiple solutions for the quasilinear equation $-\mathrm{div}\,\mathbf{A}(x,\nabla u)| u| ^{\alpha (x)-2}u=f(x,u)$ in $ \mathbb{R} ^{N}$, which involves a general variable exponent elliptic operator $\mathbf{ A
Externí odkaz:
http://arxiv.org/abs/2010.04467
Autor:
Liu Jingjing, Pucci Patrizia
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023)
The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{
Externí odkaz:
https://doaj.org/article/5a7da67337ea41cdb44205134c714260
Autor:
Ciraolo, Giulio, Sciammetta, Angela
We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1
Externí odkaz:
http://arxiv.org/abs/1809.08930
Autor:
Nguyen, Quoc-Hung
In this paper, we prove $L^q$-estimates for gradients of solutions to singular quasilinear elliptic equations with measure data $$-\operatorname{div}(A(x,\nabla u))=\mu,$$ in a bounded domain $\Omega\subset\mathbb{R}^{N}$, where $A(x,\nabla u)\nabla
Externí odkaz:
http://arxiv.org/abs/1705.07440
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.