Zobrazeno 1 - 8
of 8
pro vyhledávání: '"presiones antropogénicas"'
Publikováno v:
Scientia Agropecuaria, Vol 13, Iss 2 (2022)
Los índices fisicoquímicos y biológicos se vienen utilizando de manera aislada, si los parámetros de estos índices se aplicaran de manera integral, reunirían en una única medida la variabilidad funcional y estructural de los componentes bióti
Externí odkaz:
https://doaj.org/article/b068aa9246b6433089f4de188e2e4953
Autor:
Kuempel, Caitlin D, Tulloch, Vivitskaia JD, Giffin, Alyssa L, Simmons, B Alexander, Hagger, Valerie, Phua, Carol, Hoegh-Guldberg, Ove
Publikováno v:
Conservation biology : the journal of the Society for Conservation Biology, vol 36, iss 3
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::dfafb631007cab6cefaf3b91b12a5910
https://escholarship.org/uc/item/8rn0x4hz
https://escholarship.org/uc/item/8rn0x4hz
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
González-M., Roy
Publikováno v:
Adams, M.A., Turnbull, T.L., Sprent, J.I. & Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl. Acad. Sci. U. S. A., 113, 4098–4103.
Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., et al. (2019). Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett., 22, 855–865.
Akinwande, M.O., Dikko, H.G. & Samson, A. (2015). Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat., 05, 754–767.
Allen, C.D., Breshears, D.D. & McDowell, N.G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 1–55.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660–684.
Allen, K., Dupuy, J.M., Gei, M.G., Hulshof, C., Medvigy, D., Pizano, C., et al. (2017a). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett., 12, 023001.
Allen, W.L., Street, S.E. & Capellini, I. (2017b). Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett., 20, 222–230.
Álvarez-Dávila, E., Cayuela, L., González-Caro, S., Aldana, A.M., Stevenson, P.R., Phillips, O., et al. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One, 12, 1–16.
Álvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., et al. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage., 267, 297–308.
Amaya, D.M.-C. (2014). Análisis florístico, estructural y biotipológico foliar de la vegetación leñosa en bosques ribereños de la cuenca baja del Río Pauto (Casanare-Colombia). Universidad Nacional de Colombia Facultad.
Anderegg, L.D.L., Berner, L.T., Badgley, G., Sethi, M.L., Law, B.E. & HilleRisLambers, J. (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett., 21, 734–744.
Andrade-Erazo, V., García, N., Raz, L., Leonel, H. & Galeano, G. (2019). Integration and management of bitter palm (Sabal mauritiiformis, Arecaceae) in agroforestry systems in the caribbean region of Colombia. Caldasia, 41, 92–107.
Anyamba, A., Chretien, J.P., Britch, S.C., Soebiyanto, R.P., Small, J.L., Jepsen, R., et al. (2019). Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep., 9, 1–14.
Asmerom, Y., Baldini, J.U.L., Prufer, K.M., Polyak, V.J., Ridley, H.E., Aquino, V. V., et al. (2020). Intertropical convergence zone variability in the Neotropics during the Common Era. Sci. Adv., 6, 1–8.
Aubry-Kientz, M., Hérault, B., Ayotte-Trépanier, C., Baraloto, C. & Rossi, V. (2013). Toward trait-based mortality models for tropical forests. PLoS One, 8, e63678.
Auger, S. & Shipley, B. (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci., 24, 419–428.
Bagousse-Pinguet, Le, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R., et al. (2017). Testing the environmental filtering concept in global drylands. J. Ecol., 105, 1058–1069.
Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.M., et al. (2010a). Decoupled leaf and stem economics in rain forest trees. Ecol. Lett., 13, 1338–1347.
Baraloto, C., Timothy Paine, C.E., Patiño, S., Bonal, D., Hérault, B. & Chave, J. (2010b). Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol., 24, 208–216.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett., 15, 393–405.
Bartletta, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. U. S. A., 113, 13098–13103.
Baynes, J., Herbohn, J., Chazdon, R.L., Nguyen, H., Firn, J., Gregorio, N., et al. (2016). Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. Biodivers. Conserv., 25, 923–941.
Becknell, J.M., Kissing Kucek, L. & Powers, J.S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. For. Ecol. Manage., 276, 88–95.
Beeckman, H. (2016). Wood anatomy and trait-based ecology. IAWA J., 37, 127–151.
Benítez-Malvido, J., Lázaro, A. & Ferraz, I.D.K. (2018). Effect of distance to edge and edge interaction on seedling regeneration and biotic damage in tropical rainforest fragments: A long-term experiment. J. Ecol., 106, 2204– 2217.
Benito Garzón, M., Alía, R., Robson, T.M. & Zavala, M.A. (2011). Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr., 20, 766–778.
Bernard-Verdier, M., Navas, M.L., Vellend, M., Violle, C., Fayolle, A. & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol., 100, 1422–1433.
Berry, J.K. (2007). Map analysis: understanding spatial patterns and relationships. Geotec Media.
Berry, S.L. & Roderick, M.L. (2005). Plant-water relations and the fibre saturation point. New Phytol., 168, 25–37.
Bianchi, C.A. & Haig, S.M. (2013). Deforestation trends of tropical dry forests in Central Brazil. Biotropica, 45, 395– 400.
Blackie, R., Baldauf, C., Gautier, D., Gumbo, D., Kassa, H., Parthasarathy, N., et al. (2014). Tropical dry forests: The state of global knowledge and recommendations. Bogor.
Bloem, van, S.J., Lugo, A.E. & Murphy, P.G. (2006). Structural response of Caribbean dry forests to hurricane winds: A case study from Guánica Forest, Puerto Rico. J. Biogeogr., 33, 517–523.
Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical Ecology with R. Numer. Ecol. with R. Springer New York Dordrecht London Heidelberg, London.
Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agron. J., 54, 464– 465.
Bray, R.H. & Kurtz, L.T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59, 39–46.
Breusch, T.S. & Pagan, A.R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47, 1287–1294.
Brodribb, T.J., Feild, T.S. & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 37, 488–498.
Brodribb, T.J., Holbrook, N.M., Edwards, E.J. & Gutiérrez, M. V. (2003). Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell Environ., 26, 443–450.
Brown, S. & Lugo, A.E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M., et al. (2018). Global trait– environment relationships of plant communities. Nat. Ecol. Evol., 2, 1906–1917.
Burt, R. & Staff, S.S. (2014). Kellogg soil survey laboratory methods manual. 5th edn. U.S. Department of Agriculture, Natural Resources Conservation Service, Lincoln.
Cabrera-Amaya, D.M. & Rivera-Díaz, O. (2016). Composición florística y estructura de los bosques ribereños de la cuenca baja del Río Pauto, Casanare, Colombia. Caldasia, 38, 53–85.
Cagnolo, L., Cabido, M. & Valladares, G. (2006). Plant species richness in the Chaco Serrano Woodland from central Argentina: Ecological traits and habitat fragmentation effects. Biol. Conserv., 132, 510–519.
Calvo-Rodriguez, S., Sanchez-Azofeifa, A.G., Duran, S.M. & Espírito-Santo, M.M. (2017). Assessing ecosystem services in Neotropical dry forests: A systematic review. Environ. Conserv., 44, 34–43.
Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepš, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol., 31, 382–394.
Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepš, J. (2019). Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology, 100, 1–8.
Carmona, C.P., Rota, C., Azcárate, F.M. & Peco, B. (2015). More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol., 29, 579–588.
Cascante, A., Quesada, M., Lobo, J.J., Biología, E. De, Rica, U.D.C., Jose, S., et al. (2002). Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv. Biol., 16, 137–147.
Castellanos-Castro, C. & Newton, A.C. (2015). Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica, 47, 660–671.
Chacón, J.E. & Duong, T. (2018). Multivariate kernel smoothing and its applications. 1st edn. Chapman and Hall/CRC, New York.
Chalmandrier, L., Münkemüller, T., Colace, M.P., Renaud, J., Aubert, S., Carlson, B.Z., et al. (2017). Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J. Ecol., 105, 277–287.
Chambers, J.M. & Hastie, T.J. (1992). Statistical models in S. Wadsworth & Brooks/Cole, Seattle.
Chauvet, M., Kunstler, G., Roy, J. & Morin, X. (2017). Using a forest dynamics model to link community assembly processes and traits structure. Funct. Ecol., 31, 1452–1461.
Chave, J. (2013). The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett., 16, 4– 16.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351–366.
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., et al. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot., 89, 907–916.
Chazdon, R.L., Brenes, A.R. & Alvarado, B.V. (2005). Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology, 86, 1808–1815.
Chazdon, R.L., Harvey, C.A., Komar, O., Griffith, D.M., Ferguson, B.G., Martínez-Ramos, M., et al. (2009). Beyond reserves: A research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica, 41, 142–153.
Chiu, C.H., Jost, L. & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol. Monogr., 84, 21–44.
Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol., 18, 117– 143.
Condit, R., Hubbell, S.P. & Foster, R.B. (1995). Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr., 65, 419–439.
Condit, R., Hubbell, S.P. & Foster, R.B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. J. Trop. Ecol., 12, 231–256.
Conti, G. & Díaz, S. (2013). Plant functional diversity and carbon storage-an empirical test in semi-arid forest ecosystems. J. Ecol., 101, 18–28.
Cordeiro, N.J. & Howe, H.F. (2001). Low recruitment of trees dispersed by animals in african forest fragments. Conserv. Biol., 15, 1733–1741.
Cornwell, W.K. & Ackerly, D.D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr., 79, 109–126.
Corzo, G. & Delgado, J. (2012). Escenarios geográficos para la restauración del bosque seco en Colombia. Bogotá.
Cramer, J.M., Mesquita, R.C.G. & Bruce Williamson, G. (2007). Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biol. Conserv., 137, 415–423.
Cunningham, S.A., Summerhayes, B. & Westoby, M. (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr., 69, 569–588.
Derroire, G., Balvanera, P., Castellanos-Castro, C., Decocq, G., Kennard, D.K., Lebrija-Trejos, E., et al. (2016). Resilience of tropical dry forests – a meta-analysis of changes in species diversity and composition during secondary succession. Oikos, 125, 1386–1397.
Dexter, K.G., Pennington, R.T., Oliveira-Filho, A.T., Bueno, M.L., Silva de Miranda, P.L. & Neves, D.M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Front. Ecol. Evol., 6, 1–7.
Dexter, K.G., Smart, B., Baldauf, C., Baker, T.R., Balinga, M.P.B., Brienen, R.J.W., et al. (2015). Floristics and biogeography of vegetation in seasonally dry tropical regions. Int. For. Rev., 17, 10–32.
Dezzeo, N., Flores, S., Zambrano-Martínez, S., Rodgers, L. & Ochoa, E. (2008). Estructura y composición florística de bosques secos y sabanas en los Llanos Orientales del Orinoco, Venezuela. Interciencia, 33, 733–740.
Díaz-Pulido, A., Benítez, A., Gómez-Ruiz, D.A., Calderón-Acevedo, C.A., Link, A., Pardo, A., et al. (2014). Mamíferos del bosque seco, una mirada al Caribe Colombiano. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 128–165.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., et al. (2016). The global spectrum of plant form and function. Nature, 529, 167–171.
Díaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K. & Robson, T.M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U. S. A., 104, 20684–20689.
Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G. (2011). Seasonally dry tropical forests: ecology and conservation. Island Press, Washington.
Dodd, I.C. & Ryan, A.C. (2016). Whole-plant physiological responses to water-deficit stress. In: eLS Plant Science. John Wiley & Sons, Ltd, Chichester, pp. 1–9.
DRYFLOR, Banda, K.R., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho, A., et al. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science (80-. )., 353, 1383–1387.
Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252.
Duvall, C.S. (2006). On the origin of the tree Spondias mombin in Africa. J. Hist. Geogr., 32, 249–266.
Espinal, L.S. & Montenegro, E. (1977). Formaciones vegetales de Colombia. Instituto Geográfico Agustín Codazzi, Bogotá.
Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., et al. (2019). Compositional response of Amazon forests to climate change. Glob. Chang. Biol., 25, 39–56.
Etter, A., McAlpine, C. & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: A regionalized spatial approach. Ann. Assoc. Am. Geogr., 98, 2–23.
Evelin, U., Marc, A., Juri, R., Riho, M. & Mander, Ü. (2009). Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res., 3, 1–28.
Fajardo, L., González, V., Nassar, J.M., Lacabana, P., Portillo Q, C.A., Carrasquel, F., et al. (2005). Tropical dry forests of Venezuela: Characterization and current conservation status. Biotropica, 37, 531–546.
FAO. (2002). Estado de la información forestal en Colombia. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Santiago de Chile.
Fauset, S., Baker, T.R., Lewis, S.L., Feldpausch, T.R., Affum-Baffoe, K., Foli, E.G., et al. (2012). Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett., 15, 1120–1129.
Feng, W., Lindner, H., Robbins, N.E. & Dinneny, J.R. (2016). Growing out of stress: The role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell, 28, 1769–1782.
Fernández-Méndez, F., Melo, O., Alvarez, E., Perez, U. & Lozano, A. (2013). Status of knowledge, conservation and management of tropical dry forest in the Magdalena river valley, Colombia. In: Tropical Dry Forests in the Americas (eds. Sánchez-Azofeifa, A., Powers, J.S., Fernandes, W.G. & Quesada, M.). CRC Press, Boca Raton, pp. 35–54.
Ferreira-Nunes, Y., Rodrigues da Luz, G., Rebleth de Souza, S., Librelon da Silva, D., Magalhés-Veloso, M.D., Marcos do Espírito-Santo, M., et al. (2014). Floristic, structural and functional group variations in tree assemblages in a Brazilian tropical dry forest. In: Tropical dry forests in the Americas: ecology, conservation, and management (eds. Sanchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 325–349.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302–4315.
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., et al. (2015a). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol., 103, 191–201.
Fortunel, C., Fine, P.V.A. & Baraloto, C. (2012). Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct. Ecol., 26, 1153–1161.
Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J., et al. (2017). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev., 92, 1156–1173.
Galicia, L., López-Blanco, J., Zarco-Arista, A.E., Filips, V. & García-Oliva, F. (1999). The relationship between solar radiation interception and soil water content in a tropical deciduous forest in Mexico. Catena, 36, 153–164.
García-Palacios, P., Maestre, F.T., Bardgett, R.D. & de Kroon, H. (2012). Plant responses to soil heterogeneity and global environmental change. J. Ecol., 100, 1303–1314.
García, H., Corzo, G., Isaacs-Cubides, P.J. & Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: insumos para su gestión. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, pp. 228–251.
García, H. & González-M, R. (2019). Bosque seco Colombia: biodiversidad y gestión. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota.
García Millán, V.E., Sánchez-Azofeifa, A., Málvarez García, G.C. & Rivard, B. (2014). Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA. Remote Sens. Environ., 144, 120–136.
Garnier, E., Cortez, J., Billès, G., Navas, M.L., Roumet, C., Debussche, M., et al. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637.
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot., 99, 967–985.
Gei, M.G. & Powes, J.S. (2014). Nutrient cycling in tropical dry forests. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 141–155.
Gentry, A.H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann.-Missouri Bot. Gard., 69, 557–593.
Gentry, A.H. (1995). Diversity and floristic composition of neotropical dry forests. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 146– 194.
Gerstner, K., Dormann, C.F., Stein, A., Manceur, A.M. & Seppelt, R. (2014). Effects of land use on plant diversity-A global meta-analysis. J. Appl. Ecol., 51, 1690–1700.
Gillespie, T.W., Grijalva, A. & Farris, C.N. (2000). Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol., 147, 37–47.
Givnish, T.J. (1995). Plant stems: Biomechanical adaptation for energy capture and influence on species distributions. In: Plant stems physiology and functional morphology (ed. Gartner, B.L.). San Diego, pp. 3–49.
Givnish, T.J. (2002). Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn., 36, 703–743.
Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol., 209, 123–136.
Gómez, J.P. & Robinson, S.K. (2014). Aves del bosque seco tropical de Colombia: las comunidades del valle alto del río Magdalena. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 94–127.
González-M., R., Garcia, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodriguez, N., et al. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environ. Res. Lett., 13, 045007.
González-M., R., Norden, N., Posada, J.M., Pizano, C., García, H., Idárraga-Piedrahita, Á., et al. (2019). Climate severity and land-cover transformation determine plant community attributes in Colombian dry forests. Biotropica, 51, 826–837.
Green, P. & Macleod, C.J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol., 7, 493–498.
Grime, J.P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol., 86, 902– 910.
Guevara, H.A. (2001). Propiedades fisicomecánicas de la madera. Universidad Distrital Francisco José de Caldas, Bogotá.
Guisan, A., Weiss, S.B., Weiss, A.D., Ecology, S.P. & Weiss, D. (2011). GLM versus CCA Spatial Modeling of Plant Species Distribution GLM versus CCA spatial modeling of plant species distribution. Plant Ecol., 143, 107– 122.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D. & McCulloh, K.A. (2001a). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D. & McCulloh, K.A. (2001b). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.
Haston, E., Richardson, J.E., Stevens, P.F., Chase, M.W. & Harris, D.J. (2009). The Linear Angiosperm Phylogeny Group (LAPG) III: A linear sequence of the families in APG III. Bot. J. Linn. Soc., 161, 128–131.
Hedin, L.O., Brookshire, E.N.J., Menge, D.N.L. & Barron, A.R. (2009). The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst., 40, 613–635.
Helmer, E.H., Kennaway, T.A., Pedreros, D. & Clark, M. (2008). Distributions of land cover and forest formations for St . Kitts, Nevis, St . Eustatius, Grenada and Barbados from satellite imagery. Caribb. J. Sci., 44, 175–198.
Helmling, S., Olbrich, A., Heinz, I. & Koch, G. (2018). Atlas of vessel elements. IAWA J., 39, 250–352.
Hengl, T., De Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., et al. (2014). SoilGrids1km-Global soil information based on automated mapping. PLoS One, 9.
Herrerías-Diego, Y., Quesada, M., Stoner, K.E., Lobo, J.A., Hernández-Flores, Y. & Sanchez Montoya, G. (2008). Effect of forest fragmentation on fruit and seed predation of the tropical dry forest tree Ceiba aesculifolia. Biol. Conserv., 141, 241–248.
Hesketh, M. & Sánchez-Azofeifa, A. (2014). A review of remote sensing of tropical dry forests. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, G.A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 83–100.
Hill, J.L. & Curran, P.J. (2003). Area, shape and isolation of tropical forest fragments: Effects on tree species diversity and implications for conservation. J. Biogeogr., 30, 1391–1403.
Holdridge, L.R. (1967). Life Zone Ecology. Tropical Science Center, San Jose.
Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J.R. & Mohren, G.M.J. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol., 16, 89–94.
Hooke, R.L., Martín-Duque, J.F. & Pedraza, J. (2012). Land transformation by humans: A review. Geol. Soc. Am. Today, 22, 4–10.
Houlton, B.Z., Wang, Y.P., Vitousek, P.M. & Field, C.B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327–330.
Hulshof, C.M., Martínez-yrízar, A., Burquez, A., Boyle, B. & Enquist, B.J. (2014). Plant functional trait variation in tropical dry forests: a review and synthesis. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, A., Powers, J.S., W, F.G. & Quesada, M.). CRC Press, Boca Raton, pp. 129–140.
Hurvich, C.M. & Tsai, C.-L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal., 14, 271–279.
Huston, M. (1980). Soil Nutrients and Tree Species Richness in Costa Rican Forests. J. Biogeogr., 7, 147.
IAWA, Angyalossy-Alfonso, V., Baas, P., Carlquist, S., Peres Chimelo, J., Rauber Coradin, V.T., et al. (2007). IAWA list of microscopic features for hardwood identification. IAWA Bull. 4th edn. National Herbarium of the Netherlands, Leiden.
IRENA. (1992). Árboles forestales útiles para su propagación. Servicio Forestal Nacional, Managua.
Jacobsen, A.L., Agenbag, L., Esler, K.J., Pratt, R.B., Ewers, F.W. & Davis, S.D. (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J. Ecol., 95, 171–183.
Jacobsen, A.L., Brandon Pratt, R., Tobin, M.F., Hacke, U.G. & Ewers, F.W. (2012). A global analysis of xylem vessel length in woody plants. Am. J. Bot., 99, 1583–1591.
Jacobsen, A.L., Ewers, F.W., Pratt, R.B., Paddock, W.A. & Davis, S.D. (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiol., 139, 546–556.
Jacquemyn, H., Butaye, J. & Hermy, M. (2001). Forest plant species richness in small, fragmented mixed deciduous forest patches: The role of area, time and dispersal limitation. J. Biogeogr., 28, 801–812.
Janzen, D.H. (1988a). Management of Habitat Fragments in a Tropical Dry Forest: Growth. Ann. Missouri Bot. Gard., 75, 105.
Janzen, D.H. (1988b). Tropical dry forests: the most endangered major tropical ecosystems. In: Biodiversity (ed. Wilson, E.O.). National Academy Press, Washington, pp. 130–136.
Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.
Kalacska, M., Sanchez-Azofeifa, G.A., Calvo-Alvarado, J.C., Quesada, M., Rivard, B. & Janzen, D.H. (2004). Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For. Ecol. Manage., 200, 227–247.
Keil, P. & Chase, J.M. (2019). Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol., 3, 390–399.
Knoepp, J.D., Coleman, D.C., Crossley Jr., D.A. & Clark, J.S. (2000). Biological indices of soil quality: an ecosystem case study of their use. For. Ecol. Manage., 138, 357–368.
Kogan, F. & Guo, W. (2017). Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens., 38, 161–178.
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol., 29, 592–599.
Kreft, H. & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A., 104, 5925–5930.
Kreft, H. & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. J. Biogeogr., 37, 2029–2053.
Kumordzi, B.B., Aubin, I., Cardou, F., Shipley, B., Violle, C., Johnstone, J., et al. (2019). Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct. Ecol., 33, 1771–1784.
L’Heureux, M.L., Takahashi, K., Watkins, A.B., Barnston, A.G., Becker, E.J., Di Liberto, T.E., et al. (2017). Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc., 98, 1363–1382.
van Laar, A. & Akça, A. (2007). Forest mensuration. In: Managing Forest Ecosystems (eds. von Gadow, K., Pukkala, T. & Tomé, M.). Springer, Netherlands, p. 283.
Laliberté, E., Grace, J.B., Huston, M.A., Lambers, H., Teste, F.P., Turner, B.L., et al. (2013). How does pedogenesis drive plant diversity? Trends Ecol. Evol., 28, 331–340.
Laliberté, E., Zemimik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science (80-. )., 345, 1602–1605.
Lambin, E.F., Geist, H.J. & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour., 28, 205–241.
Larkin, C.C., Kwit, C., Wunderle, J.M., Helmer, E.H., Stevens, M.H.H., Roberts, M.T.K., et al. (2012). Disturbance type and plant successional communities in Bahamian dry forests. Biotropica, 44, 10–18.
Laurance, W.F. & Curran, T.J. (2008). Impacts of wind disturbance on fragmented tropical forests: A review and synthesis. Austral Ecol., 33, 399–408.
Lavorel, S. & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol., 16, 545–556.
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., et al. (2008). Assessing functional diversity in the field-Methodology matters! Funct. Ecol., 22, 134–147.
Lawlor, D.W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot., 103, 561–579.
Legendre, P., Oksanen, J. & ter Braak, C.J.F. (2011). Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol., 2, 269–277.
Lehmann, C.E.R., Archibald, S.A., Hoffmann, W.A. & Bond, W.J. (2011). Deciphering the distribution of the savanna biome. New Phytol., 191, 197–209.
Lenz, T.I., Wright, I.J. & Westoby, M. (2006). Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant., 127, 423–433.
Li, F.L., Bao, W.K. & Wu, N. (2009). Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, sophora davidii. Agrofor. Syst., 77, 193–201.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H.J., et al. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J., 37, 152–171.
Li, W., Cao, S., Campos-Vargas, C. & Sanchez-Azofeifa, A. (2017). Identifying tropical dry forests extent and succession via the use of machine learning techniques. Int. J. Appl. Earth Obs. Geoinf., 63, 196–205.
Linares-Palomino, R., Cardona, V., Hennig, E.I., Hensen, I., Hoffmann, D., Lendzion, J., et al. (2009). Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol., 201, 87–99.
Linares-Palomino, R., Kvist, L.P., Aguirre-Mendoza, Z. & Gonzales-Inca, C. (2010). Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers. Conserv., 19, 169–185.
Linares-Palomino, R., Oliveira-Filho, A.T. & Pennington, R.T. (2011). Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Seasonally Dry Tropical Forests (eds. Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G.). Island Press, Washington, DC, pp. 3–21.
Lindborg, R. & Eriksson, O. (2004). Historical landscape connectivity affects present plant species diversity. Ecology, 85, 1840–1845.
López-Camacho, R., González-M., R. & Cano, M. (2007). Acacia farnesiana (L.) Willd. (Fabaceae: Leguminosae), una especie exótica con potencial invasivo en los bosques secos de la isla de Providencia (Colombia). Biota Colomb., 8 (2), 221–239.
Lopezaraiza-Mikel, M., Álvarez-Añorve, M., Ávila-Cabadilla, L., Martén-Rodríguez, S., Calvo-Alvarado, J., Marcos do Espírito-Santo, M., et al. (2013). Phenological patterns of tropical dry forests along latitudinal and successional gradients in the Neotropics. In: Tropical Dry Forests in the Americas: Ecology, Conservation, and Management (eds. Sanchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, pp. 101– 128.
Lugo, A.E., Medina, E., Trejo-Torres, J.C. & Helmer, E. (2006). Botanical and ecological basis for the resilience of Antillean dry forests. In: Neotropical savannas and seasonally dry forests: Plant biodiversity, biogeography and conservation (eds. Pennington, R.T., Ratter, J.A. & Lewis, G.P.). CRC Press, Boca Raton, pp. 359–382.
Maass, J.M., Balvanera, P., Castillo, A., Daily, G.C., Mooney, H.A., Ehrlich, P., et al. (2005). Ecosystem services of tropical dry forests: insights from long-term ecological and social research on the Pacific Coast of Mexico. Ecol. Soc., 10, 17.
Madsen, B. & Gamstedt, E.K. (2013). Wood versus plant fibers: Similarities and differences in composite applications. Adv. Mater. Sci. Eng., 2013.
Malagón-Castro, D. (2003). Ensayo sobre tipología de suelos colombianos-Énfasis en génesis y aspectos ambientales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., 27, 319–341.
Marcelo-Peña, J.L., Reynel-Rodríguez, C., Zevallos-Pollito, P., Bulnes-Soriano, F. & Pérez-Ojeda del Arco, A. (2007). Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecol. Apl., 6, 9.
Markesteijn, L. (2010). Drought tolerance of tropical tree species: functional traits, trade-offs and species distribution. Wageningen University.
Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011a). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol., 191, 480–495.
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. (2011b). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ., 34, 137–148.
Marks, C.O. & Lechowicz, M.J. (2006). Alternative designs and the evolution of functional diversity. Am. Nat., 167, 55–66.
Marks, C.O., Muller-Landau, H.C. & Tilman, D. (2016). Tree diversity, tree height and environmental harshness in eastern and western North America. Ecol. Lett., 19, 743–751.
Martinuzzi, S., Gould, W.A., Vierling, L.A., Hudak, A.T., Nelson, R.F. & Evans, J.S. (2013). Quantifying tropical dry forest type and succession: substantial improvement with LIDAR. Biotropica, 45, 135–146.
Maza-Villalobos, S., Poorter, L. & Martínez-Ramos, M. (2013). Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. PLoS One, 8, e82040.
McDonal, J.H. (2014). Handbook of biolological statistics. 3rd edn. University of Delaware, Baltimore.
McDowell, N., Allen, C.D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., et al. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol., 219, 851–869.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol., 178, 719–739.
McDowell, N.G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol., 155, 1051–1059.
McGarigal, K. & Marks, B.J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178–185.
Medina, E. & Silva, J.F. (1990). Savannas of Northern South America: A steady state regulated by water-fire interactions on a background of low nutrient availability. J. Biogeogr., 17, 403.
Meinzer, F.C. & McCulloh, K.A. (2013). Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? Tree Physiol., 33, 331–334.
Menage, P.M.A. & Pridmore, B. (1973). Automated determination of phos-phate using Bray No. 1 extractant. CSIRO-Division of Soils, Black Mountain.
Méndez-Alonzo, R., Paz, H., Zuluaga, R.C., Rosell, J.A. & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397–2406.
Méndez-Toribio, M., Ibarra-Manríquez, G., Navarrete-Segueda, A. & Paz, H. (2017). Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees. Environ. Res. Lett., 12.
Mendivelso, H.A., Camarero, J.J., Royo Obregón, O., Gutiérrez, E. & Toledo, M. (2013). Differential growth responses to water balance of coexisting deciduous tree species arelinked to wood density in a Bolivian tropical dry forest. PLoS One, 8, e73855.
Messier, J., McGill, B.J. & Lechowicz, M.J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett., 13, 838–848.
Metzger, J.P. (2000). Tree functional group richness and landscape structure in a brazilian tropical fragmented landscape. Ecol. Appl., 10, 1147–1161.
Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., et al. (2006). A global overview of the conservation status of tropical dry forests. J. Biogeogr., 33, 491–505.
Miller, J.E.D., Damschen, E.I. & Ives, A.R. (2019). Functional traits and community composition: A comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol., 10, 415–425.
Mooney, H.A., Bullock, S.H. & Medina, E. (1995). Introduction. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 1–8.
Moser, D., Zechmeister, H.G., Plutzar, C., Sauberer, N., Wrbka, T. & Grabherr, G. (2002). Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol., 17, 657–669.
Muenchow, J., von Wehrden, H., Rodríguez, E.F., Rodríguez, R.A., Bayer, F. & Richter, M. (2013). Woody vegetation of a peruvian tropical dry forest along a climatic gradient depends more on soil than annual precipitation. Erdkunde, 67, 241–248.
Murphy, P.G. & Lugo, A.E. (1986). Ecology of tropical dry forest. Annu. Rev. Ecol. Syst., 17, 67–88.
Murphy, P.G. & Lugo, A.E. (1995). Dry forests of Central America and the Caribbean. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 9–34.
Muscarella, R. & Uriarte, M. (2016). Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci., 283.
Nepstad, D.C., Tohver, I.M., David, R., Moutinho, P. & Cardinot, G. (2007). Mortality of large trees and lianas following experimental drought in an amazon forest. Ecology, 88, 2259–2269.
Neves, D.M., Dexter, K.G., Pennington, R.T., Bueno, M.L. & Oliveira Filho, A.T. (2015). Environmental and historical controls of floristic composition across the South American Dry Diagonal. J. Biogeogr., 42, 1566– 1576.
Newbold, T., Hudson, L.N., Phillips, H.R.P., Hill, S.L.L., Contu, S., Lysenko, I., et al. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B Biol. Sci., 281.
Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2, 453–469.
Nirmal Kumar, J.I., Patel, K., Kumar, R.N. & Kumar Bhoi, R. (2011). Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India. Ann. For. Res., 54, 89–98.
Norden, N., González-M., R., Avella-M., A., Salgado-Negret, B., Alcázar, C., Rodríguez-Buriticá, S., et al. (2020). Building a socio-ecological monitoring platform for the comprehensive management of tropical dry forests. Plants, People, Planet, 1–11.
Nunes Garcia, B., Libonati, R. & Nunes, A.M.B. (2018). Extreme drought events over the Amazon Basin: The perspective from the reconstruction of South American Hydroclimate. Water, 10, 1594.
O’Donnell, M.S. & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the Conterminous United States. U.S Geol. Surv. Data Ser. 691. Denver Publishing Service Center, Fort Collins.
Ogaya, R. & Peñuelas, J. (2007). Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol., 189, 291–299.
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B. & Stevens, M. (2007). The vegan package.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., et al. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience, 51, 933–938.
Olson, M.E. & Rosell, J.A. (2013). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol., 197, 1204–1213.
Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., et al. (2011). Global patterns of leaf mechanical properties. Ecol. Lett., 14, 301–312.
Osnas, J.L.D., Lichstein, J.W., Reich, P.B. & Pacala, S.W. (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science (80-. )., 340, 741–744.
Ouédraogo, D.Y., Fayolle, A., Gourlet-Fleury, S., Mortier, F., Freycon, V., Fauvet, N., et al. (2016). The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol., 104, 924–935.
Paine, C.E.T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., et al. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol., 103, 978–989.
Pakeman, R.J. & Quested, H.M. (2007). Sampling plant functional traits: What proportion of the species need to be measured? Appl. Veg. Sci., 10, 91–96.
Parrado-Rosselli, A., González-M., R. & García, H. (2016). Los bosques de Colombia: estado y disponibilidad de investigación científica generados para el país. In: Biodiversidad 2015. Estado y Tendencias de la Biodiversidad Continental de Colombia (eds. Gómez, M.F., Moreno, L.A., Andrade, G.I. & Rueda, C.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, p. 107.
Peña-Claros, M., Poorter, L., Alarcón, A., Blate, G., Choque, U., Fredericksen, T.S., et al. (2012). Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica, 44, 276–283.
Pennington, R.T., Lavin, M. & Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst., 40, 437–457.
Pennington, R.T., Richardson, J.E. & Lavin, M. (2006a). Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol., 172, 605–616.
Pennington, T., Gwilyn, P. & Ratter, J. (2006b). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forest. In: Neotropical Savannas and Seasonally Dry Forests. Plant Diversity, Biogeography and Conservation (eds. Pennington, T., Gwilyn, P.L. & Ratter, J.A.). CRC Press, Boca Raton, pp. 1–29.
Peres, C.A., Barlow, J. & Laurance, W.F. (2006). Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol., 21, 227–229.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61, 167–234.
Perroni-Ventura, Y., Montaña, C. & García-Oliva, F. (2006). Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. J. Veg. Sci., 17, 719–728.
Petruzzellis, F., Palandrani, C., Savi, T., Alberti, R., Nardini, A. & Bacaro, G. (2017). Sampling intraspecific variability in leaf functional traits: Practical suggestions to maximize collected information. Ecol. Evol., 7, 11236–11245.
Pimm, S.L. (1998). The forest fragment classic. Nature, 393, 23–24.
Pineda-García, F., Arredondo-Amezcua, L. & Ibarra-Manríquez, G. (2007). Riqueza y diversidad de especies leñosas del bosque tropical caducifolio El Tarimo, cuenca del Balsas, Guerrero. Rev. Mex. Biodivers., 78, 129–139.
Pineda-García, F., Paz, H. & Meinzer, F.C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell Environ., 36, 405–418.
Pineda-García, F., Paz, H., Meinzer, F.C. & Angeles, G. (2015). Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol., 36, 208–217.
Pistón, N., de Bello, F., Dias, A.T.C., Götzenberger, L., Rosado, B.H.P., de Mattos, E.A., et al. (2019). Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol., 107, 2317–2328.
Pizano, C., Cabrera, M. & García, H. (2014a). Bosque seco tropical en Colombia: Generalidades y contexto. In: Bosque seco tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–47.
Pizano, C. & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.
Pizano, C., González-M., R., González, M.F., Castro-Lima, F., López, R., Rodríguez, N., et al. (2014b). Las plantas de los bosques secos de Colombia. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 48–93.
Pizano, C., González-M., R., Hernández-Jaramillo, A. & García, H. (2017). Agenda de investigación y monitoreo en bosques secos de Colombia (2013-2015): fortaleciendo redes de colaboración para su gestión integral en el territorio. Biodivers. en la Práctica, 2, 48–86.
Pizano, C., González-M., R., López, R., Jurado, R.D., Cuadros, H., Castaño-Naranjo, A., et al. (2016). El bosque seco tropical en Colombia: Distribución y estado de conservación. In: Biodiversidad 2015. Estado y Tendencias de la Biodiversidad Continental de Colombia (eds. Gómez, M.F., Moreno, L.A., Andrade, G.I. & Rueda, C.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, p. 202.
van der Plas, F., van Klink, R., Manning, P., Olff, H. & Fischer, M. (2017). Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol., 8, 1072–1080.
Pohlert, T. (2016). Calculate pairwise multiple comparisons of mean rank sums.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol., 182, 565–588.
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.C., Peña-Claros, M., et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol., 185, 481–492.
Poorter, L., van der Sande, M.T., Arets, E.J.M.M., Ascarrunz, N., Enquist, B., Finegan, B., et al. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr., 26, 1423–1434.
Poorter, L., van der Sande, M.T., Thompson, J., Arets, E.J.M.M., Alarcón, A., Álvarez-Sánchez, J., et al. (2015). Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr., 24, 1314–1328.
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–1920.
Portillo-Quintero, C., Sanchez-Azofeifa, A., Calvo-Alvarado, J., Quesada, M. & do Espirito Santo, M.M. (2015). The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Reg. Environ. Chang., 15, 1039–1049.
Portillo-Quintero, C.A. & Sánchez-Azofeifa, G.A. (2010). Extent and conservation of tropical dry forests in the Americas. Biol. Conserv., 143, 144–155.
Powers, J.S., Becknell, J.M., Irving, J. & Pèrez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. For. Ecol. Manage., 258, 959–970.
Powers, J.S., Corre, M.D., Twine, T.E. & Veldkamp, E. (2011). Geographic bias of field observations of soil carbon stocks with tropical land-Use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. U. S. A., 108, 6318– 6322.
Powers, J.S. & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Funct. Ecol., 24, 927–936.
Powers, J.S., Vargas G., G., Brodribb, T.J., Schwartz, N.B., Pérez-Aviles, D., Smith-Martin, C.M., et al. (2020). A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol., 26, 3122–3133.
Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., et al. (2016). Conservative species drive biomass productivity in tropical dry forests. J. Ecol., 104, 817–827.
Pratt, R.B., Jacobsen, A.L., Ewers, F.W. & Davis, S.D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol., 174, 787– 798.
R Core, T. (2004). R: a Language and Environment for Statistical Computing. http://www.R-project.org/.
Rangel-Ch, J.O., Lowy-C, P.D. & Aguilar-P, M. (1997). Tipos de vegetación en Colombia: Una aproximación al conocimiento de la terminologia fitosociológica, fitoecológica y de uso común. Colomb. Divers. Biot. II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Bogotá.
Reeuwijk, L.P. (2002). Procedures for soil analysis. 6th edn. International Soil Reference and Information Centre, Wageningen.
Riley, S.J., DeGloria, S.D. & Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci., 5, 23–27.
Rodríguez-Cabal, M.A., Aizen, M.A. & Novaro, A.J. (2007). Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biol. Conserv., 139, 195–202.
Rodríguez, J.P., Nassar, J.M., Rodríguez-Clark, K.M., Zager, I., Portillo-Quintero, C.A., Carrasquel, F., et al. (2008). Tropical dry forests in Venezuela: Assessing status, threats and future prospects. Environ. Conserv., 35, 311–318.
Rodríguez, R., Mabres, A., Luckman, B., Evans, M., Masiokas, M. & Ektvedt, T.M. (2005). “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia, 22, 181–186.
Rojas-P., L. & León-H., W.J. (2020). Wood anatomy of 25 species in Malvaceae from venezuela. Universidad de Los Andes, Mérida.
Rolim, S.G., Jesus, R.M., Nascimento, H.E.M., Do Couto, H.T.Z. & Chambers, J.Q. (2005). Biomass change in an Atlantic tropical moist forest: The ENSO effect in permanent sample plots over a 22-year period. Oecologia, 142, 238–246.
Rosell, J.A., Olson, M.E. & Anfodillo, T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Reports, 3, 46–59.
Rowland, J.A., Bland, L.M., Keith, D.A., Juffe-Bignoli, D., Burgman, M.A., Etter, A., et al. (2019). Ecosystem indices to support global biodiversity conservation. Conserv. Lett., 1–11.
Royston, J.P. (1982). An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat., 31, 115.
Ruiz-Jaen, M.C. & Potvin, C. (2010). Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica, 42, 638–646.
Rundel, P.W. & Boonpragob, K. (1995). Dry forest ecosystems of Thailand. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 35–63.
Ryan, M.G. & Yoder, B.J. (1997). Hydraulic limits to tree height and tree growth. Bioscience, 47, 235–242.
Sagar, R. & Singh, J.S. (2004). Local plant species depletion in a tropical dry deciduous forest of northern India. Environ. Conserv., 31, 55–62.
Salgado-Negret, B., Pulido Rodríguez, Esperanza Nancy Cabrera, M., Ruíz Osorio, C. & Paz, H. (2015). Protocolo para la medicion de rasgos funcionales en plantas. In: La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–79.
Salgado Negret, B. (2015). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.
Salleo, S. & Nakdini, A. (2000). Sclerophylly: Evolutionary advantage or mere epiphenomenon? Plant Biosyst., 134, 247–259.
Sampaio, E.V.S.B. (1995). Overview of the Brazilian caatinga. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 35–63.
Sánchez-Azofeifa, G.A., Kalacska, M., Quesada, M., Calvo-Alvarado, J.C., Nassar, J.M. & Rodríguez, J.P. (2005a). Need for integrated research for a sustainable future in tropical dry forests. Conserv. Biol., 19, 285–286.
Sánchez-Azofeifa, G.A. & Portillo-Quintero, C. (2011). Extent and drivers of change of neotropical seasonally dry tropical forests. In: Seasonally dry tropical forests: ecology and conservation (eds. Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G.). Island Press, Washington, pp. 45–57.
Sánchez-Azofeifa, G.A., Quesada, M., Cuevas-Reyes, P., Castillo, A. & Sánchez-Montoya, G. (2009). Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. For. Ecol. Manage., 258, 907–912.
Sánchez-Azofeifa, G.A., Quesada, M., Rodríguez, J.P., Nassar, J.M., Stoner, K.E., Castillo, A., et al. (2005b). Research priorities for neotropical dry forests. Biotropica, 37, 477–485.
Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., et al. (2004a). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543–550.
Santiago, L.S., Kitajima, K., Wright, S.J. & Mulkey, S.S. (2004b). Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia, 139, 495–502.
Santiago, S.L., Bonal, D., De Guzman, M.E. & Ávila-Lovera, E. (2016). Drought survival strategies of tropical trees. In: Drought survival strategies of tropical trees (eds. Goldstein, G. & Santiago, L.S.). Springer, Cham, pp. 243–258.
Schindler, D., Bauhus, J. & Mayer, H. (2012). Wind effects on trees. Eur. J. For. Res., 131, 159–163.
Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. (2013). How to quantify conduits in wood? Front. Plant Sci., 4, 1– 11.
Seiwa, K. & Kikuzawa, K. (1991). Phenology of tree seedlings in relation to seed size. Can. J. Bot., 69, 532–538.
Seiwa, K. & Kikuzawa, K. (1996). Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio, 123, 51–64.
Serraj, R., Sinclair, T.R. & Purcell, L.C. (1999). Symbiotic N2 fixation response to drought. J. Exp. Bot., 50, 143– 155.
Sheil, D. & Phillips, O. (1995). Evaluating turnover in tropical forests. Science (80-. )., 268, 894–895.
Silva, J.O., Espírito-Santo, M.M. & Morais, H.C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic Appl. Ecol., 16, 210–219.
Singh, J.S. & Chaturvedi, R.K. (2017). Tropical dry deciduous forest: Research trends and emerging features. Trop. Dry Deciduous For. Res. Trends Emerg. Featur. Springer Nature Singapore Pte Ltd., Singapore.
Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120.
Sobrado, M.A. (1997). Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecologica, 18, 383–391.
Sokal, R. & Rohlf, J. (1995). Biometry: The principles and practice of statistics in biological research. Freeman, San Francisco.
Somavilla, N.S., Kolb, R.M. & Rossatto, D.R. (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Rev. Bras. Bot., 37, 69–82.
Sorieul, M., Dickson, A., Hill, S.J. & Pearson, H. (2016). Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials (Basel)., 9, 1–36.
Spannl, S., Volland, F., Pucha, D., Peters, T., Cueva, E. & Bräuning, A. (2016). Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees-Struct. Funct., 30, 1245–1258.
Sperry, J.S. (1995). Limitations on stem water transport and their consequences. In: Plant stems: Physiology and functional morphology (ed. Gartner, B.L.). Academic Press, Herausgeber, pp. 105–124.
Sprent, J.I. (2009). Legume nodulation: A global perspective. Wiley-Blackwell, Oxford.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett., 17, 866–880.
Stekhoven, D.J. & Bühlmann, P. (2012). MissForest–Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28, 112–118.
Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. U. S. A., 108, 20627–20632.
Talbot, J., Lewis, S.L., Lopez-Gonzalez, G., Brienen, R.J.W., Monteagudo, A., Baker, T.R., et al. (2014). Methods to estimate aboveground wood productivity from long-term forest inventory plots. For. Ecol. Manage., 320, 30– 38.
Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. (2016). Global patterns and determinants of forest canopy height. Ecology, 97, 3265–3270.
Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geogr. Rev., 38, 55–94.
Torres, A.M., Adarve, J.B., Cárdenas, M., Vargas, J.A., Londoño, V., Rivera, K., et al. (2012). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia. Biota Colomb., 13, 66–84.
Traba, J., Iranzo, E.C., Carmona, C.P. & Malo, J.E. (2019). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400–1409.
Trejo, I. & Dirzo, R. (2000). Deforestation of seasonally dry tropical forest: A national and local analysis in Mexico. Biol. Conserv., 94, 133–142.
Trejo, I. & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodivers. Conserv., 11, 2063–2084.
Turner, I.M. (1994). Sclerophylly: Primarily Protective? Funct. Ecol., 8, 669.
Urbina-Cardona, N., Navas, C.A., González, I., Gómez-Martínez, M.J., Llano-Mejía, J., Medina-Rangel, G.F., et al. (2014). Determinantes de la distribución de los anfibios en el bosque seco tropical de Colombia: herramientas para su conservación. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 167–193.
Uribe, A., Velásquez, P. & Montoya, M. (2001). Ecologia de poblaciones de Attalea butyracea (Arecaceae) en un área de bosque seco tropical (Las Brisas, Sucre, Colombia). Actual Biol, 23, 33–39.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito-Garzón, M., et al. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett., 17, 1351–1364.
Valladares, F., Sanchez-Gomez, D. & Zavala, M.A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol., 94, 1103–1116.
Vargas, G.G., Werden, L.K. & Powers, J.S. (2015). Explaining legume success in tropical dry forests based on seed germination niches: A new hypothesis. Biotropica, 47, 277–280.
Vargas, W. & Ramírez, W. (2014). Lineamientos generales para la restauración del bosque seco tropical en Colombia. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 252–291.
Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S. Springer-Verlag, New York.
Venturas, M.D., MacKinnon, E.D., Dario, H.L., Jacobsen, A.L., Pratt, R.B. & Davis, S.D. (2016). Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014. PLoS One, 11, 1–22.
Vicente-Serrano, S.M., Zouber, A., Lasanta, T. & Pueyo, Y. (2012). Dryness is accelerating degradation of vulnerable shrublands in semiarid mediterranean environments. Ecol. Monogr., 82, 407–428.
Villanueva Tamayo, B., Melo Cruz, O. & Rincón-González, M. (2015). Estado del conocimiento y aportes a la flora vascular del bosque seco del Tolima. Colomb. For., 18, 9–23.
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., et al. (2012). The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol., 27, 244–252.
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.
Walkley, A. (1946). A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci., 63, 251–264.
Wall, D.H., González, G. & Simmons, B.L. (2011). Seasonally dry tropical forests soil diversity and functioning. In: Seasonally Dry Tropical Forests (eds. Dirzo, R., Mooney, H.A. & Ceballos, G.). Island Press, Washington, pp. 61–70.
Wan, J.Z., Li, Q.F., Li, N., Si, J.H., Zhang, Z.X., Wang, C.J., et al. (2018). Soil indicators of plant diversity for global ecoregions: Implications for management practices. Glob. Ecol. Conserv., 14, e00404.
Whittaker, R.H. (1965). Dominance and diversity in land plant communities. Science (80-. )., 147, 250–260.
Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., et al. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. U. S. A., 116, 587–592.
Wigley, B.J., Slingsby, J.A., Díaz, S., Bond, W.J., Fritz, H. & Coetsee, C. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J. Ecol., 104, 1357–1369.
Williams, J.N., Trejo, I. & Schwartz, M.W. (2017). Commonness, rarity, and oligarchies of woody plants in the tropical dry forests of Mexico. Biotropica, 49, 493–501.
Williamson, G.B., Laurance, W.F., Oliveira, A.A., Delamônica, P., Gascon, C., Lovejoy, T.E., et al. (2000). Amazonian tree mortality during the 1997 El Nino drought. Conserv. Biol., 14, 1538–1542.
Wilson, B.F. (1995). Shrub stems: Form and function. In: Plant stems: Physiology and functional morphology (ed.Gartner, B.L.). Academic Press, Herausgeber, pp. 91–102.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.
Wright, S.J. (1992). Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends Ecol. Evol., 7, 260–263.
Wright, S.J. (2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1–14.
Xu, H. & Becker, P. (2012). Arcgis data models for managing and procesing imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 39, 97–101.
Yu, L. & Gong, P. (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int. J. Remote Sens., 33, 3966–3986.
Zhi-yun, O., Ru-song, W., Xiao-ke, W. & Han, X. (1999). Impacts of land cover change on plant and bird species diversity in Hainan Island, China. J. Environ. Sci., 11, 227–230.
Ziemińska, K., Westoby, M. & Wright, I.J. (2015). Broad anatomical variation within a narrow wood density range-A study of twig wood across 69 Australian angiosperms. PLoS One, 10, 1–25.
Zimmermann, M.H. (1983). Xylem structure and the ascent of sap. Springer-Verlag, Berlin.
Zomer, R.J., Trabucco, A., Bossio, D.A. & Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ., 126, 67–80.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., et al. (2019). Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett., 22, 855–865.
Akinwande, M.O., Dikko, H.G. & Samson, A. (2015). Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat., 05, 754–767.
Allen, C.D., Breshears, D.D. & McDowell, N.G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 1–55.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660–684.
Allen, K., Dupuy, J.M., Gei, M.G., Hulshof, C., Medvigy, D., Pizano, C., et al. (2017a). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett., 12, 023001.
Allen, W.L., Street, S.E. & Capellini, I. (2017b). Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett., 20, 222–230.
Álvarez-Dávila, E., Cayuela, L., González-Caro, S., Aldana, A.M., Stevenson, P.R., Phillips, O., et al. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One, 12, 1–16.
Álvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., et al. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage., 267, 297–308.
Amaya, D.M.-C. (2014). Análisis florístico, estructural y biotipológico foliar de la vegetación leñosa en bosques ribereños de la cuenca baja del Río Pauto (Casanare-Colombia). Universidad Nacional de Colombia Facultad.
Anderegg, L.D.L., Berner, L.T., Badgley, G., Sethi, M.L., Law, B.E. & HilleRisLambers, J. (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett., 21, 734–744.
Andrade-Erazo, V., García, N., Raz, L., Leonel, H. & Galeano, G. (2019). Integration and management of bitter palm (Sabal mauritiiformis, Arecaceae) in agroforestry systems in the caribbean region of Colombia. Caldasia, 41, 92–107.
Anyamba, A., Chretien, J.P., Britch, S.C., Soebiyanto, R.P., Small, J.L., Jepsen, R., et al. (2019). Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep., 9, 1–14.
Asmerom, Y., Baldini, J.U.L., Prufer, K.M., Polyak, V.J., Ridley, H.E., Aquino, V. V., et al. (2020). Intertropical convergence zone variability in the Neotropics during the Common Era. Sci. Adv., 6, 1–8.
Aubry-Kientz, M., Hérault, B., Ayotte-Trépanier, C., Baraloto, C. & Rossi, V. (2013). Toward trait-based mortality models for tropical forests. PLoS One, 8, e63678.
Auger, S. & Shipley, B. (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci., 24, 419–428.
Bagousse-Pinguet, Le, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R., et al. (2017). Testing the environmental filtering concept in global drylands. J. Ecol., 105, 1058–1069.
Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.M., et al. (2010a). Decoupled leaf and stem economics in rain forest trees. Ecol. Lett., 13, 1338–1347.
Baraloto, C., Timothy Paine, C.E., Patiño, S., Bonal, D., Hérault, B. & Chave, J. (2010b). Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol., 24, 208–216.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett., 15, 393–405.
Bartletta, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. U. S. A., 113, 13098–13103.
Baynes, J., Herbohn, J., Chazdon, R.L., Nguyen, H., Firn, J., Gregorio, N., et al. (2016). Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. Biodivers. Conserv., 25, 923–941.
Becknell, J.M., Kissing Kucek, L. & Powers, J.S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. For. Ecol. Manage., 276, 88–95.
Beeckman, H. (2016). Wood anatomy and trait-based ecology. IAWA J., 37, 127–151.
Benítez-Malvido, J., Lázaro, A. & Ferraz, I.D.K. (2018). Effect of distance to edge and edge interaction on seedling regeneration and biotic damage in tropical rainforest fragments: A long-term experiment. J. Ecol., 106, 2204– 2217.
Benito Garzón, M., Alía, R., Robson, T.M. & Zavala, M.A. (2011). Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr., 20, 766–778.
Bernard-Verdier, M., Navas, M.L., Vellend, M., Violle, C., Fayolle, A. & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol., 100, 1422–1433.
Berry, J.K. (2007). Map analysis: understanding spatial patterns and relationships. Geotec Media.
Berry, S.L. & Roderick, M.L. (2005). Plant-water relations and the fibre saturation point. New Phytol., 168, 25–37.
Bianchi, C.A. & Haig, S.M. (2013). Deforestation trends of tropical dry forests in Central Brazil. Biotropica, 45, 395– 400.
Blackie, R., Baldauf, C., Gautier, D., Gumbo, D., Kassa, H., Parthasarathy, N., et al. (2014). Tropical dry forests: The state of global knowledge and recommendations. Bogor.
Bloem, van, S.J., Lugo, A.E. & Murphy, P.G. (2006). Structural response of Caribbean dry forests to hurricane winds: A case study from Guánica Forest, Puerto Rico. J. Biogeogr., 33, 517–523.
Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical Ecology with R. Numer. Ecol. with R. Springer New York Dordrecht London Heidelberg, London.
Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agron. J., 54, 464– 465.
Bray, R.H. & Kurtz, L.T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59, 39–46.
Breusch, T.S. & Pagan, A.R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47, 1287–1294.
Brodribb, T.J., Feild, T.S. & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 37, 488–498.
Brodribb, T.J., Holbrook, N.M., Edwards, E.J. & Gutiérrez, M. V. (2003). Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell Environ., 26, 443–450.
Brown, S. & Lugo, A.E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M., et al. (2018). Global trait– environment relationships of plant communities. Nat. Ecol. Evol., 2, 1906–1917.
Burt, R. & Staff, S.S. (2014). Kellogg soil survey laboratory methods manual. 5th edn. U.S. Department of Agriculture, Natural Resources Conservation Service, Lincoln.
Cabrera-Amaya, D.M. & Rivera-Díaz, O. (2016). Composición florística y estructura de los bosques ribereños de la cuenca baja del Río Pauto, Casanare, Colombia. Caldasia, 38, 53–85.
Cagnolo, L., Cabido, M. & Valladares, G. (2006). Plant species richness in the Chaco Serrano Woodland from central Argentina: Ecological traits and habitat fragmentation effects. Biol. Conserv., 132, 510–519.
Calvo-Rodriguez, S., Sanchez-Azofeifa, A.G., Duran, S.M. & Espírito-Santo, M.M. (2017). Assessing ecosystem services in Neotropical dry forests: A systematic review. Environ. Conserv., 44, 34–43.
Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepš, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol., 31, 382–394.
Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepš, J. (2019). Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology, 100, 1–8.
Carmona, C.P., Rota, C., Azcárate, F.M. & Peco, B. (2015). More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol., 29, 579–588.
Cascante, A., Quesada, M., Lobo, J.J., Biología, E. De, Rica, U.D.C., Jose, S., et al. (2002). Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv. Biol., 16, 137–147.
Castellanos-Castro, C. & Newton, A.C. (2015). Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica, 47, 660–671.
Chacón, J.E. & Duong, T. (2018). Multivariate kernel smoothing and its applications. 1st edn. Chapman and Hall/CRC, New York.
Chalmandrier, L., Münkemüller, T., Colace, M.P., Renaud, J., Aubert, S., Carlson, B.Z., et al. (2017). Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J. Ecol., 105, 277–287.
Chambers, J.M. & Hastie, T.J. (1992). Statistical models in S. Wadsworth & Brooks/Cole, Seattle.
Chauvet, M., Kunstler, G., Roy, J. & Morin, X. (2017). Using a forest dynamics model to link community assembly processes and traits structure. Funct. Ecol., 31, 1452–1461.
Chave, J. (2013). The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett., 16, 4– 16.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351–366.
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., et al. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot., 89, 907–916.
Chazdon, R.L., Brenes, A.R. & Alvarado, B.V. (2005). Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology, 86, 1808–1815.
Chazdon, R.L., Harvey, C.A., Komar, O., Griffith, D.M., Ferguson, B.G., Martínez-Ramos, M., et al. (2009). Beyond reserves: A research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica, 41, 142–153.
Chiu, C.H., Jost, L. & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol. Monogr., 84, 21–44.
Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol., 18, 117– 143.
Condit, R., Hubbell, S.P. & Foster, R.B. (1995). Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr., 65, 419–439.
Condit, R., Hubbell, S.P. & Foster, R.B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. J. Trop. Ecol., 12, 231–256.
Conti, G. & Díaz, S. (2013). Plant functional diversity and carbon storage-an empirical test in semi-arid forest ecosystems. J. Ecol., 101, 18–28.
Cordeiro, N.J. & Howe, H.F. (2001). Low recruitment of trees dispersed by animals in african forest fragments. Conserv. Biol., 15, 1733–1741.
Cornwell, W.K. & Ackerly, D.D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr., 79, 109–126.
Corzo, G. & Delgado, J. (2012). Escenarios geográficos para la restauración del bosque seco en Colombia. Bogotá.
Cramer, J.M., Mesquita, R.C.G. & Bruce Williamson, G. (2007). Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biol. Conserv., 137, 415–423.
Cunningham, S.A., Summerhayes, B. & Westoby, M. (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr., 69, 569–588.
Derroire, G., Balvanera, P., Castellanos-Castro, C., Decocq, G., Kennard, D.K., Lebrija-Trejos, E., et al. (2016). Resilience of tropical dry forests – a meta-analysis of changes in species diversity and composition during secondary succession. Oikos, 125, 1386–1397.
Dexter, K.G., Pennington, R.T., Oliveira-Filho, A.T., Bueno, M.L., Silva de Miranda, P.L. & Neves, D.M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Front. Ecol. Evol., 6, 1–7.
Dexter, K.G., Smart, B., Baldauf, C., Baker, T.R., Balinga, M.P.B., Brienen, R.J.W., et al. (2015). Floristics and biogeography of vegetation in seasonally dry tropical regions. Int. For. Rev., 17, 10–32.
Dezzeo, N., Flores, S., Zambrano-Martínez, S., Rodgers, L. & Ochoa, E. (2008). Estructura y composición florística de bosques secos y sabanas en los Llanos Orientales del Orinoco, Venezuela. Interciencia, 33, 733–740.
Díaz-Pulido, A., Benítez, A., Gómez-Ruiz, D.A., Calderón-Acevedo, C.A., Link, A., Pardo, A., et al. (2014). Mamíferos del bosque seco, una mirada al Caribe Colombiano. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 128–165.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., et al. (2016). The global spectrum of plant form and function. Nature, 529, 167–171.
Díaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K. & Robson, T.M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U. S. A., 104, 20684–20689.
Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G. (2011). Seasonally dry tropical forests: ecology and conservation. Island Press, Washington.
Dodd, I.C. & Ryan, A.C. (2016). Whole-plant physiological responses to water-deficit stress. In: eLS Plant Science. John Wiley & Sons, Ltd, Chichester, pp. 1–9.
DRYFLOR, Banda, K.R., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho, A., et al. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science (80-. )., 353, 1383–1387.
Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252.
Duvall, C.S. (2006). On the origin of the tree Spondias mombin in Africa. J. Hist. Geogr., 32, 249–266.
Espinal, L.S. & Montenegro, E. (1977). Formaciones vegetales de Colombia. Instituto Geográfico Agustín Codazzi, Bogotá.
Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., et al. (2019). Compositional response of Amazon forests to climate change. Glob. Chang. Biol., 25, 39–56.
Etter, A., McAlpine, C. & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: A regionalized spatial approach. Ann. Assoc. Am. Geogr., 98, 2–23.
Evelin, U., Marc, A., Juri, R., Riho, M. & Mander, Ü. (2009). Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res., 3, 1–28.
Fajardo, L., González, V., Nassar, J.M., Lacabana, P., Portillo Q, C.A., Carrasquel, F., et al. (2005). Tropical dry forests of Venezuela: Characterization and current conservation status. Biotropica, 37, 531–546.
FAO. (2002). Estado de la información forestal en Colombia. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Santiago de Chile.
Fauset, S., Baker, T.R., Lewis, S.L., Feldpausch, T.R., Affum-Baffoe, K., Foli, E.G., et al. (2012). Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett., 15, 1120–1129.
Feng, W., Lindner, H., Robbins, N.E. & Dinneny, J.R. (2016). Growing out of stress: The role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell, 28, 1769–1782.
Fernández-Méndez, F., Melo, O., Alvarez, E., Perez, U. & Lozano, A. (2013). Status of knowledge, conservation and management of tropical dry forest in the Magdalena river valley, Colombia. In: Tropical Dry Forests in the Americas (eds. Sánchez-Azofeifa, A., Powers, J.S., Fernandes, W.G. & Quesada, M.). CRC Press, Boca Raton, pp. 35–54.
Ferreira-Nunes, Y., Rodrigues da Luz, G., Rebleth de Souza, S., Librelon da Silva, D., Magalhés-Veloso, M.D., Marcos do Espírito-Santo, M., et al. (2014). Floristic, structural and functional group variations in tree assemblages in a Brazilian tropical dry forest. In: Tropical dry forests in the Americas: ecology, conservation, and management (eds. Sanchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 325–349.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302–4315.
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., et al. (2015a). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol., 103, 191–201.
Fortunel, C., Fine, P.V.A. & Baraloto, C. (2012). Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct. Ecol., 26, 1153–1161.
Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J., et al. (2017). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev., 92, 1156–1173.
Galicia, L., López-Blanco, J., Zarco-Arista, A.E., Filips, V. & García-Oliva, F. (1999). The relationship between solar radiation interception and soil water content in a tropical deciduous forest in Mexico. Catena, 36, 153–164.
García-Palacios, P., Maestre, F.T., Bardgett, R.D. & de Kroon, H. (2012). Plant responses to soil heterogeneity and global environmental change. J. Ecol., 100, 1303–1314.
García, H., Corzo, G., Isaacs-Cubides, P.J. & Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: insumos para su gestión. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, pp. 228–251.
García, H. & González-M, R. (2019). Bosque seco Colombia: biodiversidad y gestión. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota.
García Millán, V.E., Sánchez-Azofeifa, A., Málvarez García, G.C. & Rivard, B. (2014). Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA. Remote Sens. Environ., 144, 120–136.
Garnier, E., Cortez, J., Billès, G., Navas, M.L., Roumet, C., Debussche, M., et al. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637.
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot., 99, 967–985.
Gei, M.G. & Powes, J.S. (2014). Nutrient cycling in tropical dry forests. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 141–155.
Gentry, A.H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann.-Missouri Bot. Gard., 69, 557–593.
Gentry, A.H. (1995). Diversity and floristic composition of neotropical dry forests. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 146– 194.
Gerstner, K., Dormann, C.F., Stein, A., Manceur, A.M. & Seppelt, R. (2014). Effects of land use on plant diversity-A global meta-analysis. J. Appl. Ecol., 51, 1690–1700.
Gillespie, T.W., Grijalva, A. & Farris, C.N. (2000). Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol., 147, 37–47.
Givnish, T.J. (1995). Plant stems: Biomechanical adaptation for energy capture and influence on species distributions. In: Plant stems physiology and functional morphology (ed. Gartner, B.L.). San Diego, pp. 3–49.
Givnish, T.J. (2002). Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn., 36, 703–743.
Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol., 209, 123–136.
Gómez, J.P. & Robinson, S.K. (2014). Aves del bosque seco tropical de Colombia: las comunidades del valle alto del río Magdalena. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 94–127.
González-M., R., Garcia, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodriguez, N., et al. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environ. Res. Lett., 13, 045007.
González-M., R., Norden, N., Posada, J.M., Pizano, C., García, H., Idárraga-Piedrahita, Á., et al. (2019). Climate severity and land-cover transformation determine plant community attributes in Colombian dry forests. Biotropica, 51, 826–837.
Green, P. & Macleod, C.J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol., 7, 493–498.
Grime, J.P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol., 86, 902– 910.
Guevara, H.A. (2001). Propiedades fisicomecánicas de la madera. Universidad Distrital Francisco José de Caldas, Bogotá.
Guisan, A., Weiss, S.B., Weiss, A.D., Ecology, S.P. & Weiss, D. (2011). GLM versus CCA Spatial Modeling of Plant Species Distribution GLM versus CCA spatial modeling of plant species distribution. Plant Ecol., 143, 107– 122.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D. & McCulloh, K.A. (2001a). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D. & McCulloh, K.A. (2001b). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.
Haston, E., Richardson, J.E., Stevens, P.F., Chase, M.W. & Harris, D.J. (2009). The Linear Angiosperm Phylogeny Group (LAPG) III: A linear sequence of the families in APG III. Bot. J. Linn. Soc., 161, 128–131.
Hedin, L.O., Brookshire, E.N.J., Menge, D.N.L. & Barron, A.R. (2009). The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst., 40, 613–635.
Helmer, E.H., Kennaway, T.A., Pedreros, D. & Clark, M. (2008). Distributions of land cover and forest formations for St . Kitts, Nevis, St . Eustatius, Grenada and Barbados from satellite imagery. Caribb. J. Sci., 44, 175–198.
Helmling, S., Olbrich, A., Heinz, I. & Koch, G. (2018). Atlas of vessel elements. IAWA J., 39, 250–352.
Hengl, T., De Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., et al. (2014). SoilGrids1km-Global soil information based on automated mapping. PLoS One, 9.
Herrerías-Diego, Y., Quesada, M., Stoner, K.E., Lobo, J.A., Hernández-Flores, Y. & Sanchez Montoya, G. (2008). Effect of forest fragmentation on fruit and seed predation of the tropical dry forest tree Ceiba aesculifolia. Biol. Conserv., 141, 241–248.
Hesketh, M. & Sánchez-Azofeifa, A. (2014). A review of remote sensing of tropical dry forests. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, G.A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, Boca Raton, pp. 83–100.
Hill, J.L. & Curran, P.J. (2003). Area, shape and isolation of tropical forest fragments: Effects on tree species diversity and implications for conservation. J. Biogeogr., 30, 1391–1403.
Holdridge, L.R. (1967). Life Zone Ecology. Tropical Science Center, San Jose.
Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J.R. & Mohren, G.M.J. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol., 16, 89–94.
Hooke, R.L., Martín-Duque, J.F. & Pedraza, J. (2012). Land transformation by humans: A review. Geol. Soc. Am. Today, 22, 4–10.
Houlton, B.Z., Wang, Y.P., Vitousek, P.M. & Field, C.B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327–330.
Hulshof, C.M., Martínez-yrízar, A., Burquez, A., Boyle, B. & Enquist, B.J. (2014). Plant functional trait variation in tropical dry forests: a review and synthesis. In: Tropical dry forests in the Americas: Ecology, conservation and management (eds. Sánchez-Azofeifa, A., Powers, J.S., W, F.G. & Quesada, M.). CRC Press, Boca Raton, pp. 129–140.
Hurvich, C.M. & Tsai, C.-L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal., 14, 271–279.
Huston, M. (1980). Soil Nutrients and Tree Species Richness in Costa Rican Forests. J. Biogeogr., 7, 147.
IAWA, Angyalossy-Alfonso, V., Baas, P., Carlquist, S., Peres Chimelo, J., Rauber Coradin, V.T., et al. (2007). IAWA list of microscopic features for hardwood identification. IAWA Bull. 4th edn. National Herbarium of the Netherlands, Leiden.
IRENA. (1992). Árboles forestales útiles para su propagación. Servicio Forestal Nacional, Managua.
Jacobsen, A.L., Agenbag, L., Esler, K.J., Pratt, R.B., Ewers, F.W. & Davis, S.D. (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J. Ecol., 95, 171–183.
Jacobsen, A.L., Brandon Pratt, R., Tobin, M.F., Hacke, U.G. & Ewers, F.W. (2012). A global analysis of xylem vessel length in woody plants. Am. J. Bot., 99, 1583–1591.
Jacobsen, A.L., Ewers, F.W., Pratt, R.B., Paddock, W.A. & Davis, S.D. (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiol., 139, 546–556.
Jacquemyn, H., Butaye, J. & Hermy, M. (2001). Forest plant species richness in small, fragmented mixed deciduous forest patches: The role of area, time and dispersal limitation. J. Biogeogr., 28, 801–812.
Janzen, D.H. (1988a). Management of Habitat Fragments in a Tropical Dry Forest: Growth. Ann. Missouri Bot. Gard., 75, 105.
Janzen, D.H. (1988b). Tropical dry forests: the most endangered major tropical ecosystems. In: Biodiversity (ed. Wilson, E.O.). National Academy Press, Washington, pp. 130–136.
Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.
Kalacska, M., Sanchez-Azofeifa, G.A., Calvo-Alvarado, J.C., Quesada, M., Rivard, B. & Janzen, D.H. (2004). Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For. Ecol. Manage., 200, 227–247.
Keil, P. & Chase, J.M. (2019). Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol., 3, 390–399.
Knoepp, J.D., Coleman, D.C., Crossley Jr., D.A. & Clark, J.S. (2000). Biological indices of soil quality: an ecosystem case study of their use. For. Ecol. Manage., 138, 357–368.
Kogan, F. & Guo, W. (2017). Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens., 38, 161–178.
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol., 29, 592–599.
Kreft, H. & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A., 104, 5925–5930.
Kreft, H. & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. J. Biogeogr., 37, 2029–2053.
Kumordzi, B.B., Aubin, I., Cardou, F., Shipley, B., Violle, C., Johnstone, J., et al. (2019). Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct. Ecol., 33, 1771–1784.
L’Heureux, M.L., Takahashi, K., Watkins, A.B., Barnston, A.G., Becker, E.J., Di Liberto, T.E., et al. (2017). Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc., 98, 1363–1382.
van Laar, A. & Akça, A. (2007). Forest mensuration. In: Managing Forest Ecosystems (eds. von Gadow, K., Pukkala, T. & Tomé, M.). Springer, Netherlands, p. 283.
Laliberté, E., Grace, J.B., Huston, M.A., Lambers, H., Teste, F.P., Turner, B.L., et al. (2013). How does pedogenesis drive plant diversity? Trends Ecol. Evol., 28, 331–340.
Laliberté, E., Zemimik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science (80-. )., 345, 1602–1605.
Lambin, E.F., Geist, H.J. & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour., 28, 205–241.
Larkin, C.C., Kwit, C., Wunderle, J.M., Helmer, E.H., Stevens, M.H.H., Roberts, M.T.K., et al. (2012). Disturbance type and plant successional communities in Bahamian dry forests. Biotropica, 44, 10–18.
Laurance, W.F. & Curran, T.J. (2008). Impacts of wind disturbance on fragmented tropical forests: A review and synthesis. Austral Ecol., 33, 399–408.
Lavorel, S. & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol., 16, 545–556.
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., et al. (2008). Assessing functional diversity in the field-Methodology matters! Funct. Ecol., 22, 134–147.
Lawlor, D.W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot., 103, 561–579.
Legendre, P., Oksanen, J. & ter Braak, C.J.F. (2011). Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol., 2, 269–277.
Lehmann, C.E.R., Archibald, S.A., Hoffmann, W.A. & Bond, W.J. (2011). Deciphering the distribution of the savanna biome. New Phytol., 191, 197–209.
Lenz, T.I., Wright, I.J. & Westoby, M. (2006). Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant., 127, 423–433.
Li, F.L., Bao, W.K. & Wu, N. (2009). Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, sophora davidii. Agrofor. Syst., 77, 193–201.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H.J., et al. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J., 37, 152–171.
Li, W., Cao, S., Campos-Vargas, C. & Sanchez-Azofeifa, A. (2017). Identifying tropical dry forests extent and succession via the use of machine learning techniques. Int. J. Appl. Earth Obs. Geoinf., 63, 196–205.
Linares-Palomino, R., Cardona, V., Hennig, E.I., Hensen, I., Hoffmann, D., Lendzion, J., et al. (2009). Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol., 201, 87–99.
Linares-Palomino, R., Kvist, L.P., Aguirre-Mendoza, Z. & Gonzales-Inca, C. (2010). Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers. Conserv., 19, 169–185.
Linares-Palomino, R., Oliveira-Filho, A.T. & Pennington, R.T. (2011). Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Seasonally Dry Tropical Forests (eds. Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G.). Island Press, Washington, DC, pp. 3–21.
Lindborg, R. & Eriksson, O. (2004). Historical landscape connectivity affects present plant species diversity. Ecology, 85, 1840–1845.
López-Camacho, R., González-M., R. & Cano, M. (2007). Acacia farnesiana (L.) Willd. (Fabaceae: Leguminosae), una especie exótica con potencial invasivo en los bosques secos de la isla de Providencia (Colombia). Biota Colomb., 8 (2), 221–239.
Lopezaraiza-Mikel, M., Álvarez-Añorve, M., Ávila-Cabadilla, L., Martén-Rodríguez, S., Calvo-Alvarado, J., Marcos do Espírito-Santo, M., et al. (2013). Phenological patterns of tropical dry forests along latitudinal and successional gradients in the Neotropics. In: Tropical Dry Forests in the Americas: Ecology, Conservation, and Management (eds. Sanchez-Azofeifa, A., Powers, J.S., Fernandes, G.W. & Quesada, M.). CRC Press, pp. 101– 128.
Lugo, A.E., Medina, E., Trejo-Torres, J.C. & Helmer, E. (2006). Botanical and ecological basis for the resilience of Antillean dry forests. In: Neotropical savannas and seasonally dry forests: Plant biodiversity, biogeography and conservation (eds. Pennington, R.T., Ratter, J.A. & Lewis, G.P.). CRC Press, Boca Raton, pp. 359–382.
Maass, J.M., Balvanera, P., Castillo, A., Daily, G.C., Mooney, H.A., Ehrlich, P., et al. (2005). Ecosystem services of tropical dry forests: insights from long-term ecological and social research on the Pacific Coast of Mexico. Ecol. Soc., 10, 17.
Madsen, B. & Gamstedt, E.K. (2013). Wood versus plant fibers: Similarities and differences in composite applications. Adv. Mater. Sci. Eng., 2013.
Malagón-Castro, D. (2003). Ensayo sobre tipología de suelos colombianos-Énfasis en génesis y aspectos ambientales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., 27, 319–341.
Marcelo-Peña, J.L., Reynel-Rodríguez, C., Zevallos-Pollito, P., Bulnes-Soriano, F. & Pérez-Ojeda del Arco, A. (2007). Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecol. Apl., 6, 9.
Markesteijn, L. (2010). Drought tolerance of tropical tree species: functional traits, trade-offs and species distribution. Wageningen University.
Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011a). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol., 191, 480–495.
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. (2011b). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ., 34, 137–148.
Marks, C.O. & Lechowicz, M.J. (2006). Alternative designs and the evolution of functional diversity. Am. Nat., 167, 55–66.
Marks, C.O., Muller-Landau, H.C. & Tilman, D. (2016). Tree diversity, tree height and environmental harshness in eastern and western North America. Ecol. Lett., 19, 743–751.
Martinuzzi, S., Gould, W.A., Vierling, L.A., Hudak, A.T., Nelson, R.F. & Evans, J.S. (2013). Quantifying tropical dry forest type and succession: substantial improvement with LIDAR. Biotropica, 45, 135–146.
Maza-Villalobos, S., Poorter, L. & Martínez-Ramos, M. (2013). Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. PLoS One, 8, e82040.
McDonal, J.H. (2014). Handbook of biolological statistics. 3rd edn. University of Delaware, Baltimore.
McDowell, N., Allen, C.D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., et al. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol., 219, 851–869.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol., 178, 719–739.
McDowell, N.G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol., 155, 1051–1059.
McGarigal, K. & Marks, B.J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178–185.
Medina, E. & Silva, J.F. (1990). Savannas of Northern South America: A steady state regulated by water-fire interactions on a background of low nutrient availability. J. Biogeogr., 17, 403.
Meinzer, F.C. & McCulloh, K.A. (2013). Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? Tree Physiol., 33, 331–334.
Menage, P.M.A. & Pridmore, B. (1973). Automated determination of phos-phate using Bray No. 1 extractant. CSIRO-Division of Soils, Black Mountain.
Méndez-Alonzo, R., Paz, H., Zuluaga, R.C., Rosell, J.A. & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397–2406.
Méndez-Toribio, M., Ibarra-Manríquez, G., Navarrete-Segueda, A. & Paz, H. (2017). Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees. Environ. Res. Lett., 12.
Mendivelso, H.A., Camarero, J.J., Royo Obregón, O., Gutiérrez, E. & Toledo, M. (2013). Differential growth responses to water balance of coexisting deciduous tree species arelinked to wood density in a Bolivian tropical dry forest. PLoS One, 8, e73855.
Messier, J., McGill, B.J. & Lechowicz, M.J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett., 13, 838–848.
Metzger, J.P. (2000). Tree functional group richness and landscape structure in a brazilian tropical fragmented landscape. Ecol. Appl., 10, 1147–1161.
Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., et al. (2006). A global overview of the conservation status of tropical dry forests. J. Biogeogr., 33, 491–505.
Miller, J.E.D., Damschen, E.I. & Ives, A.R. (2019). Functional traits and community composition: A comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol., 10, 415–425.
Mooney, H.A., Bullock, S.H. & Medina, E. (1995). Introduction. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 1–8.
Moser, D., Zechmeister, H.G., Plutzar, C., Sauberer, N., Wrbka, T. & Grabherr, G. (2002). Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol., 17, 657–669.
Muenchow, J., von Wehrden, H., Rodríguez, E.F., Rodríguez, R.A., Bayer, F. & Richter, M. (2013). Woody vegetation of a peruvian tropical dry forest along a climatic gradient depends more on soil than annual precipitation. Erdkunde, 67, 241–248.
Murphy, P.G. & Lugo, A.E. (1986). Ecology of tropical dry forest. Annu. Rev. Ecol. Syst., 17, 67–88.
Murphy, P.G. & Lugo, A.E. (1995). Dry forests of Central America and the Caribbean. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 9–34.
Muscarella, R. & Uriarte, M. (2016). Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci., 283.
Nepstad, D.C., Tohver, I.M., David, R., Moutinho, P. & Cardinot, G. (2007). Mortality of large trees and lianas following experimental drought in an amazon forest. Ecology, 88, 2259–2269.
Neves, D.M., Dexter, K.G., Pennington, R.T., Bueno, M.L. & Oliveira Filho, A.T. (2015). Environmental and historical controls of floristic composition across the South American Dry Diagonal. J. Biogeogr., 42, 1566– 1576.
Newbold, T., Hudson, L.N., Phillips, H.R.P., Hill, S.L.L., Contu, S., Lysenko, I., et al. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B Biol. Sci., 281.
Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2, 453–469.
Nirmal Kumar, J.I., Patel, K., Kumar, R.N. & Kumar Bhoi, R. (2011). Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India. Ann. For. Res., 54, 89–98.
Norden, N., González-M., R., Avella-M., A., Salgado-Negret, B., Alcázar, C., Rodríguez-Buriticá, S., et al. (2020). Building a socio-ecological monitoring platform for the comprehensive management of tropical dry forests. Plants, People, Planet, 1–11.
Nunes Garcia, B., Libonati, R. & Nunes, A.M.B. (2018). Extreme drought events over the Amazon Basin: The perspective from the reconstruction of South American Hydroclimate. Water, 10, 1594.
O’Donnell, M.S. & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the Conterminous United States. U.S Geol. Surv. Data Ser. 691. Denver Publishing Service Center, Fort Collins.
Ogaya, R. & Peñuelas, J. (2007). Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol., 189, 291–299.
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B. & Stevens, M. (2007). The vegan package.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., et al. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience, 51, 933–938.
Olson, M.E. & Rosell, J.A. (2013). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol., 197, 1204–1213.
Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., et al. (2011). Global patterns of leaf mechanical properties. Ecol. Lett., 14, 301–312.
Osnas, J.L.D., Lichstein, J.W., Reich, P.B. & Pacala, S.W. (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science (80-. )., 340, 741–744.
Ouédraogo, D.Y., Fayolle, A., Gourlet-Fleury, S., Mortier, F., Freycon, V., Fauvet, N., et al. (2016). The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol., 104, 924–935.
Paine, C.E.T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., et al. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol., 103, 978–989.
Pakeman, R.J. & Quested, H.M. (2007). Sampling plant functional traits: What proportion of the species need to be measured? Appl. Veg. Sci., 10, 91–96.
Parrado-Rosselli, A., González-M., R. & García, H. (2016). Los bosques de Colombia: estado y disponibilidad de investigación científica generados para el país. In: Biodiversidad 2015. Estado y Tendencias de la Biodiversidad Continental de Colombia (eds. Gómez, M.F., Moreno, L.A., Andrade, G.I. & Rueda, C.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, p. 107.
Peña-Claros, M., Poorter, L., Alarcón, A., Blate, G., Choque, U., Fredericksen, T.S., et al. (2012). Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica, 44, 276–283.
Pennington, R.T., Lavin, M. & Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst., 40, 437–457.
Pennington, R.T., Richardson, J.E. & Lavin, M. (2006a). Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol., 172, 605–616.
Pennington, T., Gwilyn, P. & Ratter, J. (2006b). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forest. In: Neotropical Savannas and Seasonally Dry Forests. Plant Diversity, Biogeography and Conservation (eds. Pennington, T., Gwilyn, P.L. & Ratter, J.A.). CRC Press, Boca Raton, pp. 1–29.
Peres, C.A., Barlow, J. & Laurance, W.F. (2006). Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol., 21, 227–229.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61, 167–234.
Perroni-Ventura, Y., Montaña, C. & García-Oliva, F. (2006). Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. J. Veg. Sci., 17, 719–728.
Petruzzellis, F., Palandrani, C., Savi, T., Alberti, R., Nardini, A. & Bacaro, G. (2017). Sampling intraspecific variability in leaf functional traits: Practical suggestions to maximize collected information. Ecol. Evol., 7, 11236–11245.
Pimm, S.L. (1998). The forest fragment classic. Nature, 393, 23–24.
Pineda-García, F., Arredondo-Amezcua, L. & Ibarra-Manríquez, G. (2007). Riqueza y diversidad de especies leñosas del bosque tropical caducifolio El Tarimo, cuenca del Balsas, Guerrero. Rev. Mex. Biodivers., 78, 129–139.
Pineda-García, F., Paz, H. & Meinzer, F.C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell Environ., 36, 405–418.
Pineda-García, F., Paz, H., Meinzer, F.C. & Angeles, G. (2015). Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol., 36, 208–217.
Pistón, N., de Bello, F., Dias, A.T.C., Götzenberger, L., Rosado, B.H.P., de Mattos, E.A., et al. (2019). Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol., 107, 2317–2328.
Pizano, C., Cabrera, M. & García, H. (2014a). Bosque seco tropical en Colombia: Generalidades y contexto. In: Bosque seco tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–47.
Pizano, C. & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.
Pizano, C., González-M., R., González, M.F., Castro-Lima, F., López, R., Rodríguez, N., et al. (2014b). Las plantas de los bosques secos de Colombia. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 48–93.
Pizano, C., González-M., R., Hernández-Jaramillo, A. & García, H. (2017). Agenda de investigación y monitoreo en bosques secos de Colombia (2013-2015): fortaleciendo redes de colaboración para su gestión integral en el territorio. Biodivers. en la Práctica, 2, 48–86.
Pizano, C., González-M., R., López, R., Jurado, R.D., Cuadros, H., Castaño-Naranjo, A., et al. (2016). El bosque seco tropical en Colombia: Distribución y estado de conservación. In: Biodiversidad 2015. Estado y Tendencias de la Biodiversidad Continental de Colombia (eds. Gómez, M.F., Moreno, L.A., Andrade, G.I. & Rueda, C.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, p. 202.
van der Plas, F., van Klink, R., Manning, P., Olff, H. & Fischer, M. (2017). Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol., 8, 1072–1080.
Pohlert, T. (2016). Calculate pairwise multiple comparisons of mean rank sums.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol., 182, 565–588.
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.C., Peña-Claros, M., et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol., 185, 481–492.
Poorter, L., van der Sande, M.T., Arets, E.J.M.M., Ascarrunz, N., Enquist, B., Finegan, B., et al. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr., 26, 1423–1434.
Poorter, L., van der Sande, M.T., Thompson, J., Arets, E.J.M.M., Alarcón, A., Álvarez-Sánchez, J., et al. (2015). Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr., 24, 1314–1328.
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–1920.
Portillo-Quintero, C., Sanchez-Azofeifa, A., Calvo-Alvarado, J., Quesada, M. & do Espirito Santo, M.M. (2015). The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Reg. Environ. Chang., 15, 1039–1049.
Portillo-Quintero, C.A. & Sánchez-Azofeifa, G.A. (2010). Extent and conservation of tropical dry forests in the Americas. Biol. Conserv., 143, 144–155.
Powers, J.S., Becknell, J.M., Irving, J. & Pèrez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. For. Ecol. Manage., 258, 959–970.
Powers, J.S., Corre, M.D., Twine, T.E. & Veldkamp, E. (2011). Geographic bias of field observations of soil carbon stocks with tropical land-Use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. U. S. A., 108, 6318– 6322.
Powers, J.S. & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Funct. Ecol., 24, 927–936.
Powers, J.S., Vargas G., G., Brodribb, T.J., Schwartz, N.B., Pérez-Aviles, D., Smith-Martin, C.M., et al. (2020). A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol., 26, 3122–3133.
Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., et al. (2016). Conservative species drive biomass productivity in tropical dry forests. J. Ecol., 104, 817–827.
Pratt, R.B., Jacobsen, A.L., Ewers, F.W. & Davis, S.D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol., 174, 787– 798.
R Core, T. (2004). R: a Language and Environment for Statistical Computing. http://www.R-project.org/.
Rangel-Ch, J.O., Lowy-C, P.D. & Aguilar-P, M. (1997). Tipos de vegetación en Colombia: Una aproximación al conocimiento de la terminologia fitosociológica, fitoecológica y de uso común. Colomb. Divers. Biot. II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Bogotá.
Reeuwijk, L.P. (2002). Procedures for soil analysis. 6th edn. International Soil Reference and Information Centre, Wageningen.
Riley, S.J., DeGloria, S.D. & Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci., 5, 23–27.
Rodríguez-Cabal, M.A., Aizen, M.A. & Novaro, A.J. (2007). Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biol. Conserv., 139, 195–202.
Rodríguez, J.P., Nassar, J.M., Rodríguez-Clark, K.M., Zager, I., Portillo-Quintero, C.A., Carrasquel, F., et al. (2008). Tropical dry forests in Venezuela: Assessing status, threats and future prospects. Environ. Conserv., 35, 311–318.
Rodríguez, R., Mabres, A., Luckman, B., Evans, M., Masiokas, M. & Ektvedt, T.M. (2005). “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia, 22, 181–186.
Rojas-P., L. & León-H., W.J. (2020). Wood anatomy of 25 species in Malvaceae from venezuela. Universidad de Los Andes, Mérida.
Rolim, S.G., Jesus, R.M., Nascimento, H.E.M., Do Couto, H.T.Z. & Chambers, J.Q. (2005). Biomass change in an Atlantic tropical moist forest: The ENSO effect in permanent sample plots over a 22-year period. Oecologia, 142, 238–246.
Rosell, J.A., Olson, M.E. & Anfodillo, T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Reports, 3, 46–59.
Rowland, J.A., Bland, L.M., Keith, D.A., Juffe-Bignoli, D., Burgman, M.A., Etter, A., et al. (2019). Ecosystem indices to support global biodiversity conservation. Conserv. Lett., 1–11.
Royston, J.P. (1982). An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat., 31, 115.
Ruiz-Jaen, M.C. & Potvin, C. (2010). Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica, 42, 638–646.
Rundel, P.W. & Boonpragob, K. (1995). Dry forest ecosystems of Thailand. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 35–63.
Ryan, M.G. & Yoder, B.J. (1997). Hydraulic limits to tree height and tree growth. Bioscience, 47, 235–242.
Sagar, R. & Singh, J.S. (2004). Local plant species depletion in a tropical dry deciduous forest of northern India. Environ. Conserv., 31, 55–62.
Salgado-Negret, B., Pulido Rodríguez, Esperanza Nancy Cabrera, M., Ruíz Osorio, C. & Paz, H. (2015). Protocolo para la medicion de rasgos funcionales en plantas. In: La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–79.
Salgado Negret, B. (2015). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.
Salleo, S. & Nakdini, A. (2000). Sclerophylly: Evolutionary advantage or mere epiphenomenon? Plant Biosyst., 134, 247–259.
Sampaio, E.V.S.B. (1995). Overview of the Brazilian caatinga. In: Seasonally Dry Tropical Forests (eds. Bullock, S.H., Mooney, H.A. & Medina, E.). Cambridge University Press, Cambridge, pp. 35–63.
Sánchez-Azofeifa, G.A., Kalacska, M., Quesada, M., Calvo-Alvarado, J.C., Nassar, J.M. & Rodríguez, J.P. (2005a). Need for integrated research for a sustainable future in tropical dry forests. Conserv. Biol., 19, 285–286.
Sánchez-Azofeifa, G.A. & Portillo-Quintero, C. (2011). Extent and drivers of change of neotropical seasonally dry tropical forests. In: Seasonally dry tropical forests: ecology and conservation (eds. Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G.). Island Press, Washington, pp. 45–57.
Sánchez-Azofeifa, G.A., Quesada, M., Cuevas-Reyes, P., Castillo, A. & Sánchez-Montoya, G. (2009). Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. For. Ecol. Manage., 258, 907–912.
Sánchez-Azofeifa, G.A., Quesada, M., Rodríguez, J.P., Nassar, J.M., Stoner, K.E., Castillo, A., et al. (2005b). Research priorities for neotropical dry forests. Biotropica, 37, 477–485.
Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., et al. (2004a). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543–550.
Santiago, L.S., Kitajima, K., Wright, S.J. & Mulkey, S.S. (2004b). Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia, 139, 495–502.
Santiago, S.L., Bonal, D., De Guzman, M.E. & Ávila-Lovera, E. (2016). Drought survival strategies of tropical trees. In: Drought survival strategies of tropical trees (eds. Goldstein, G. & Santiago, L.S.). Springer, Cham, pp. 243–258.
Schindler, D., Bauhus, J. & Mayer, H. (2012). Wind effects on trees. Eur. J. For. Res., 131, 159–163.
Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. (2013). How to quantify conduits in wood? Front. Plant Sci., 4, 1– 11.
Seiwa, K. & Kikuzawa, K. (1991). Phenology of tree seedlings in relation to seed size. Can. J. Bot., 69, 532–538.
Seiwa, K. & Kikuzawa, K. (1996). Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio, 123, 51–64.
Serraj, R., Sinclair, T.R. & Purcell, L.C. (1999). Symbiotic N2 fixation response to drought. J. Exp. Bot., 50, 143– 155.
Sheil, D. & Phillips, O. (1995). Evaluating turnover in tropical forests. Science (80-. )., 268, 894–895.
Silva, J.O., Espírito-Santo, M.M. & Morais, H.C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic Appl. Ecol., 16, 210–219.
Singh, J.S. & Chaturvedi, R.K. (2017). Tropical dry deciduous forest: Research trends and emerging features. Trop. Dry Deciduous For. Res. Trends Emerg. Featur. Springer Nature Singapore Pte Ltd., Singapore.
Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120.
Sobrado, M.A. (1997). Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecologica, 18, 383–391.
Sokal, R. & Rohlf, J. (1995). Biometry: The principles and practice of statistics in biological research. Freeman, San Francisco.
Somavilla, N.S., Kolb, R.M. & Rossatto, D.R. (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Rev. Bras. Bot., 37, 69–82.
Sorieul, M., Dickson, A., Hill, S.J. & Pearson, H. (2016). Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials (Basel)., 9, 1–36.
Spannl, S., Volland, F., Pucha, D., Peters, T., Cueva, E. & Bräuning, A. (2016). Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees-Struct. Funct., 30, 1245–1258.
Sperry, J.S. (1995). Limitations on stem water transport and their consequences. In: Plant stems: Physiology and functional morphology (ed. Gartner, B.L.). Academic Press, Herausgeber, pp. 105–124.
Sprent, J.I. (2009). Legume nodulation: A global perspective. Wiley-Blackwell, Oxford.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett., 17, 866–880.
Stekhoven, D.J. & Bühlmann, P. (2012). MissForest–Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28, 112–118.
Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. U. S. A., 108, 20627–20632.
Talbot, J., Lewis, S.L., Lopez-Gonzalez, G., Brienen, R.J.W., Monteagudo, A., Baker, T.R., et al. (2014). Methods to estimate aboveground wood productivity from long-term forest inventory plots. For. Ecol. Manage., 320, 30– 38.
Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. (2016). Global patterns and determinants of forest canopy height. Ecology, 97, 3265–3270.
Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geogr. Rev., 38, 55–94.
Torres, A.M., Adarve, J.B., Cárdenas, M., Vargas, J.A., Londoño, V., Rivera, K., et al. (2012). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia. Biota Colomb., 13, 66–84.
Traba, J., Iranzo, E.C., Carmona, C.P. & Malo, J.E. (2019). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400–1409.
Trejo, I. & Dirzo, R. (2000). Deforestation of seasonally dry tropical forest: A national and local analysis in Mexico. Biol. Conserv., 94, 133–142.
Trejo, I. & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodivers. Conserv., 11, 2063–2084.
Turner, I.M. (1994). Sclerophylly: Primarily Protective? Funct. Ecol., 8, 669.
Urbina-Cardona, N., Navas, C.A., González, I., Gómez-Martínez, M.J., Llano-Mejía, J., Medina-Rangel, G.F., et al. (2014). Determinantes de la distribución de los anfibios en el bosque seco tropical de Colombia: herramientas para su conservación. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 167–193.
Uribe, A., Velásquez, P. & Montoya, M. (2001). Ecologia de poblaciones de Attalea butyracea (Arecaceae) en un área de bosque seco tropical (Las Brisas, Sucre, Colombia). Actual Biol, 23, 33–39.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito-Garzón, M., et al. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett., 17, 1351–1364.
Valladares, F., Sanchez-Gomez, D. & Zavala, M.A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol., 94, 1103–1116.
Vargas, G.G., Werden, L.K. & Powers, J.S. (2015). Explaining legume success in tropical dry forests based on seed germination niches: A new hypothesis. Biotropica, 47, 277–280.
Vargas, W. & Ramírez, W. (2014). Lineamientos generales para la restauración del bosque seco tropical en Colombia. In: El Bosque Seco Tropical en Colombia (eds. Pizano, C. & García, H.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 252–291.
Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S. Springer-Verlag, New York.
Venturas, M.D., MacKinnon, E.D., Dario, H.L., Jacobsen, A.L., Pratt, R.B. & Davis, S.D. (2016). Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014. PLoS One, 11, 1–22.
Vicente-Serrano, S.M., Zouber, A., Lasanta, T. & Pueyo, Y. (2012). Dryness is accelerating degradation of vulnerable shrublands in semiarid mediterranean environments. Ecol. Monogr., 82, 407–428.
Villanueva Tamayo, B., Melo Cruz, O. & Rincón-González, M. (2015). Estado del conocimiento y aportes a la flora vascular del bosque seco del Tolima. Colomb. For., 18, 9–23.
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., et al. (2012). The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol., 27, 244–252.
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.
Walkley, A. (1946). A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci., 63, 251–264.
Wall, D.H., González, G. & Simmons, B.L. (2011). Seasonally dry tropical forests soil diversity and functioning. In: Seasonally Dry Tropical Forests (eds. Dirzo, R., Mooney, H.A. & Ceballos, G.). Island Press, Washington, pp. 61–70.
Wan, J.Z., Li, Q.F., Li, N., Si, J.H., Zhang, Z.X., Wang, C.J., et al. (2018). Soil indicators of plant diversity for global ecoregions: Implications for management practices. Glob. Ecol. Conserv., 14, e00404.
Whittaker, R.H. (1965). Dominance and diversity in land plant communities. Science (80-. )., 147, 250–260.
Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., et al. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. U. S. A., 116, 587–592.
Wigley, B.J., Slingsby, J.A., Díaz, S., Bond, W.J., Fritz, H. & Coetsee, C. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J. Ecol., 104, 1357–1369.
Williams, J.N., Trejo, I. & Schwartz, M.W. (2017). Commonness, rarity, and oligarchies of woody plants in the tropical dry forests of Mexico. Biotropica, 49, 493–501.
Williamson, G.B., Laurance, W.F., Oliveira, A.A., Delamônica, P., Gascon, C., Lovejoy, T.E., et al. (2000). Amazonian tree mortality during the 1997 El Nino drought. Conserv. Biol., 14, 1538–1542.
Wilson, B.F. (1995). Shrub stems: Form and function. In: Plant stems: Physiology and functional morphology (ed.Gartner, B.L.). Academic Press, Herausgeber, pp. 91–102.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.
Wright, S.J. (1992). Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends Ecol. Evol., 7, 260–263.
Wright, S.J. (2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1–14.
Xu, H. & Becker, P. (2012). Arcgis data models for managing and procesing imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 39, 97–101.
Yu, L. & Gong, P. (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int. J. Remote Sens., 33, 3966–3986.
Zhi-yun, O., Ru-song, W., Xiao-ke, W. & Han, X. (1999). Impacts of land cover change on plant and bird species diversity in Hainan Island, China. J. Environ. Sci., 11, 227–230.
Ziemińska, K., Westoby, M. & Wright, I.J. (2015). Broad anatomical variation within a narrow wood density range-A study of twig wood across 69 Australian angiosperms. PLoS One, 10, 1–25.
Zimmermann, M.H. (1983). Xylem structure and the ascent of sap. Springer-Verlag, Berlin.
Zomer, R.J., Trabucco, A., Bossio, D.A. & Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ., 126, 67–80.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
El objetivo de esta tesis fue identificar los determinantes de la dureza ambiental en los Bosques Tropicales Secos (TDF) de Colombia y estudiar su influencia en los atributos y funcionamiento de las comunidades vegetales. Además, esta tesis evaluó
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8f445a169977b4116d4b40e658db0d8
https://repository.urosario.edu.co/handle/10336/30749
https://repository.urosario.edu.co/handle/10336/30749
Publikováno v:
Investigaciones Geográficas, Iss 73, p 121 (2020)
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Los humedales costeros conforman uno de los ecosistemas más productivos del mundo, brindando diversos servicios ambientales tales como la regulación hídrica, climática, provisión de alimentos, recreación y disfrute espiritual, entre muchos otro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::647e2c8980d67ccb70f82662cc6e3402
https://hdl.handle.net/10045/103148
https://hdl.handle.net/10045/103148
Autor:
Valenzuela, William Edison
Publikováno v:
REDIUNLU (UNLu)
Universidad Nacional de Luján
instacron:UNLu
Universidad Nacional de Luján
instacron:UNLu
Fil: Valenzuela, William Edison. Universidad Nacional de Luján; Argentina. En el siguiente documento se propone un análisis integrado de los fenómenos amenazantes por condiciones socio naturales comprendidos en el espacio geográfico que abarca la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::710cb44048d796e76c9d0c7d7b862d1e
http://ri.unlu.edu.ar/xmlui/handle/rediunlu/815
http://ri.unlu.edu.ar/xmlui/handle/rediunlu/815
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
Los humedales costeros conforman uno de los ecosistemas más productivos del mundo, brindando diversos servicios ambientales tales como la regulación hídrica, climática, provisión de alimentos, recreación y disfrute espiritual, entre muchos otro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=RECOLECTA___::b83bc7bc00eee3efa5750596e30c72d6
https://doi.org/10.14198/INGEO2020.SCS
https://doi.org/10.14198/INGEO2020.SCS
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.