Zobrazeno 1 - 10
of 43
pro vyhledávání: '"prediction statistics"'
Autor:
Ladislav Zjavka
Publikováno v:
Systems Science & Control Engineering, Vol 12, Iss 1 (2024)
Load corrections with respect to power quality (PQ) after the first pre-estimate of Renewable Energy (RE) power consumption must ensure system-tolerant performance without malfunctions. First, acceptable daily load sequences for the attached equipmen
Externí odkaz:
https://doaj.org/article/c0898741f003403999da804cd67ae88e
Autor:
Gianina Tapalaga, Luminita Maria Nica, Laura-Elena Cirligeriu, Bogdan Andrei Bumbu, Marius Pricop
Publikováno v:
Dentistry Journal, Vol 12, Iss 11, p 371 (2024)
Background and Objectives: Odontogenic infections (OIs) can lead to severe complications, especially in elderly patients due to age-related physiological changes and comorbidities. This study aims to evaluate the predictive accuracy of inflammatory s
Externí odkaz:
https://doaj.org/article/705ea3e7ce794e87a6459206e2714bfb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 8, Iss 24 (2019)
Background The currently used atherosclerotic cardiovascular disease risk calculator relies on several measured variables and does not incorporate some well‐established risk factors such as family history of premature myocardial infarction and othe
Externí odkaz:
https://doaj.org/article/512a933d1b6e4cf7839fefed0cc8bae4
Autor:
Grace M. Egeland, Svetlana Skurtveit, Anne Cathrine Staff, Geir Egil Eide, Anne‐Kjersti Daltveit, Kari Klungsøyr, Lill Trogstad, Per M. Magnus, Anne Lise Brantsæter, Margaretha Haugen
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 7, Iss 10 (2018)
BackgroundThe association between pregnancy complications and women's later cardiovascular disease has, primarily, been evaluated in studies lacking information on important covariates. This report evaluates the prospective associations between pregn
Externí odkaz:
https://doaj.org/article/201a1a54f8e74eab848ec536ed4cbe5e
Autor:
Quinn R. Pack, Aruna Priya, Tara Lagu, Penelope S. Pekow, Richard Engelman, David M. Kent, Peter K. Lindenauer
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 5, Iss 9, Pp n/a-n/a (2016)
Background Although models exist for predicting hospital readmission after coronary artery bypass surgery, no such models exist for predicting readmission after heart valve surgery (HVS). Methods and Results Using a geographically and structurally di
Externí odkaz:
https://doaj.org/article/3d3cbaa941c94401a333653ae2cb6f3a
Autor:
Ravi H. Parikh, Stephen L. Seliger, Robert Christenson, John S. Gottdiener, Bruce M. Psaty, Christopher R. deFilippi
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 5, Iss 8 (2016)
BackgroundSoluble ST2 (sST2), a marker of myocyte stretch and fibrosis, has prognostic value in many cardiovascular diseases. We hypothesized that sST2 levels are associated with incident heart failure (HF), including subtypes of preserved (HFpEF) an
Externí odkaz:
https://doaj.org/article/fbeb28c6efc445d28b812e8dcd1c6d6e
A simple relationship for predicting marathon performance from training: Is it generally applicable?
Autor:
Giovanni Tanda
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
The aim of this work is to provide further validation of a predictive formula for marathon time performance (MPT) published in 2011. The predictive formula has been correlated with new sample points derived mainly from publicly available data on Stra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f43b38061a7f3749c27058781e56686
http://hdl.handle.net/10045/109478
http://hdl.handle.net/10045/109478
Investing money has never been a risk-free process. Many models have been designed for the prediction of stock market returns. In this survey paper, we present an analysis of the various works done in the field of support vector machines for the pred
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09e0c6cf01d01da7d5ae6aa208c58e39