Zobrazeno 1 - 10
of 31
pro vyhledávání: '"poly-Euler polynomials and numbers"'
Autor:
Khan, Waseem A.1 wkhan1@pmu.edu.sa
Publikováno v:
Matematicki Vesnik. Sep2023, Vol. 75 Issue 3, p147-156. 10p.
In this paper, we consider a new class of polynomials which is called the multi-poly-Euler polynomials. Then, we investigate their some properties and relations. We provide that the type 2 degenerate multi-poly-Euler polynomials equals a linear combi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d99662c98139908d899c9e0ec29a4ff
Publikováno v:
Applied Mathematics in Science & Engineering. Dec2023, Vol. 31 Issue 1, p1-14. 14p.
Publikováno v:
Symmetry, Vol 12, Iss 6, p 1011 (2020)
In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper
Externí odkaz:
https://doaj.org/article/632699e482294496b757411b3055c67e
Publikováno v:
Applied Mathematics in Science & Engineering. Dec2023, Vol. 31 Issue 1, p1-11. 11p.
Autor:
Lee, Dae Sik1 (AUTHOR) dslee@daegu.ac.kr, Kim, Hye Kyung2 (AUTHOR) hkkim@cu.ac.kr, Jang, Lee-Chae3 (AUTHOR) Lcjang@konkuk.ac.kr
Publikováno v:
Symmetry (20738994). Jun2020, Vol. 12 Issue 6, p1011-1011. 1p.
Autor:
Cheon Seoung Ryoo1
Publikováno v:
Journal of Computational Analysis & Applications. Jan2024, Vol. 32 Issue 1, p276-285. 10p.
Autor:
Komatsu, T.1 (AUTHOR), Ramírez, J. L.2 (AUTHOR) jlramirezr@unal.edu.co, Sirvent, V. F.3 (AUTHOR)
Publikováno v:
Ukrainian Mathematical Journal. Sep2020, Vol. 72 Issue 4, p536-554. 19p.
Many mathematicians have been studying various degenerate versions of special polynomials and numbers in some arithmetic and combinatorial aspects. Our main focus here is a new type of degenerate poly-Euler polynomials and numbers. This focus stems f
Externí odkaz:
http://arxiv.org/abs/2210.08208
In the present article, we introduce a $(p,q)$-analogue of the poly-Euler polynomials and numbers by using the $(p,q)$-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give several combinat
Externí odkaz:
http://arxiv.org/abs/1604.03787