Zobrazeno 1 - 10
of 55
pro vyhledávání: '"poincaré–birkhoff twist theorem"'
Autor:
Chunlian Liu, Shuang Wang
Publikováno v:
AIMS Mathematics, Vol 8, Iss 10, Pp 25195-25219 (2023)
We investigate the existence of multiple periodic solutions for a class of second order parameter-dependent equations of the form $ x''+f(t, x) = sp(t) $. We compare the behavior of its solutions with suitable linear and piecewise linear equations ne
Externí odkaz:
https://doaj.org/article/8733c0a4e0bc4e8c9bd95eb9ec626f2c
Publikováno v:
AIMS Mathematics, Vol 6, Iss 11, Pp 12913-12928 (2021)
In this paper, we prove the existence of harmonic solutions and infinitely many subharmonic solutions of dissipative second order sublinear differential equations named quadratic Liénard type systems. The method of the proof is based on the Poincar
Externí odkaz:
https://doaj.org/article/4cbb19a738f5477ea0accb46a478e2d4
Publikováno v:
Advanced Nonlinear Studies, Vol 21, Iss 3, Pp 489-499 (2021)
In this paper, we investigate the problem of the existence and multiplicity of periodic solutions to the planar Hamiltonian system x′=-λα(t)f(y)x^{\prime}=-\lambda\alpha(t)f(y), y′=λβ(t)g(x)y^{\prime}=\lambda\beta(t)g(
Externí odkaz:
https://doaj.org/article/01f307bef3734cd3930f343da9c6a951
Publikováno v:
AIMS Mathematics, Vol 6, Iss 7, Pp 7170-7186 (2021)
The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincaré-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral propertie
Externí odkaz:
https://doaj.org/article/e065b7964a494d258d6090f620a7b823
Autor:
Wang, Zaihong
Publikováno v:
Proceedings of the American Mathematical Society, 1998 Aug 01. 126(8), 2267-2276.
Externí odkaz:
https://www.jstor.org/stable/118740
Autor:
Zaihong Wang, Tiantian Ma
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-16 (2017)
Abstract In this paper, we look for periodic solutions of planar Hamiltonian systems { x ′ = f ( y ) + p 1 ( t , y ) , y ′ = − g ( x ) + p 2 ( t , x ) . $$\left \{ \textstyle\begin{array}{l} x'=f(y)+p_{1}(t,y),\\ y'=-g(x)+p_{2}(t,x). \end{array
Externí odkaz:
https://doaj.org/article/69611a6ec86d4c61ae9d7c545876182d
Publikováno v:
AIMS Mathematics, Vol 6, Iss 11, Pp 12913-12928 (2021)
In this paper, we prove the existence of harmonic solutions and infinitely many subharmonic solutions of dissipative second order sublinear differential equations named quadratic Liénard type systems. The method of the proof is based on the Poincar
Publikováno v:
AIMS Mathematics, Vol 6, Iss 7, Pp 7170-7186 (2021)
The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincare-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral properties
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:2393-2419
This paper studies the existence of subharmonics of arbitrary order in a generalized class of non-autonomous predator-prey systems of Volterra type with periodic coefficients. When the model is non-degenerate it is shown that the Poincare–Birkhoff