Zobrazeno 1 - 10
of 4 561
pro vyhledávání: '"perfect ring"'
Autor:
Marangoni, Davide
Derived de Rham cohomology has been recently used in several contexts, as in works of Beilinson and Bhatt on p-adic periods morphisms and Morin on numerical invariants for special values of zeta functions. Inspired by some results of Morin, we aimed
Externí odkaz:
http://arxiv.org/abs/1901.02365
Autor:
Alard, C.
The image of a point situated at the center of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These 2 effects, displacement and breaking ar
Externí odkaz:
http://arxiv.org/abs/0706.0215
Publikováno v:
Plasmonics. Oct2017, Vol. 12 Issue 5, p1613-1619. 7p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Stinuseopw
Pearl Rings: A symbol of purity, innocence and elegance.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1725878e1b273f9a0f6470a84bfea07
Autor:
Isao Kikumasa, Yosuke Kuratomi
Publikováno v:
Communications in Algebra. 46:2063-2072
In 1971, Koehler [11] proved a structure theorem for quasi-projective modules over right perfect rings by using results of Wu–Jans [22]. Later Mohamed–Singh [17] studied discrete modules over right perfect rings and gave decomposition theorems fo
Publikováno v:
Plasmonics. 12:1613-1619
The plasmon resonances and field enhancement in split ring-perfect ring (SR-PR) nanostructure are investigated numerically by using a finite element method. Multiple electric and magnetic Fano resonances are achieved. The magnetic Fano resonances are
Autor:
R. H. Sallam
Publikováno v:
International Journal of Algebra. 8:181-186
We prove that a right self right perfect algebra which is at most countable dimensional modulo their Jacobson radical is right artinian.
Autor:
C. Alard
Publikováno v:
Monthly Notices of the Royal Astronomical Society: Letters. 382:L58-L62
The image of a point situated at the center of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These 2 effects, displacement and breaking ar