Zobrazeno 1 - 10
of 5 730
pro vyhledávání: '"perfect graph"'
In this paper, we characterize the class of {\em contraction perfect} graphs which are the graphs that remain perfect after the contraction of any edge set. We prove that a graph is contraction perfect if and only if it is perfect and the contraction
Externí odkaz:
http://arxiv.org/abs/2401.12793
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we give anticoncentration bounds for sums of independent random vectors in finite-dimensional vector spaces. In particular, we asymptotically establish a conjecture of Leader and Radcliffe (1994) and a question of Jones (1978). The high
Externí odkaz:
http://arxiv.org/abs/2306.11904
The dichromatic number of $D$, denoted by $\overrightarrow{\chi}(D)$, is the smallest integer $k$ such that $D$ admits an acyclic $k$-coloring. We use $mader_{\overrightarrow{\chi}}(F)$ to denote the smallest integer $k$ such that if $\overrightarrow
Externí odkaz:
http://arxiv.org/abs/2210.06247
Autor:
Miyazaki, Mitsuhiro
In this paper, we give a criterion of the nearly Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ with connected components $G^{(1)}, \ldot
Externí odkaz:
http://arxiv.org/abs/2201.02957
Publikováno v:
In Applied Mathematics and Computation 1 August 2023 450
Autor:
Miyazaki, Mitsuhiro
In this paper, we give a criterion of the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ is Gorenstein if and only if (1) sizes of maxima
Externí odkaz:
http://arxiv.org/abs/2005.03259
Autor:
Singh, Abhishek Kr, Natarajan, Raja
The Perfect Graph Theorems are important results in graph theory describing the relationship between clique number $\omega(G) $ and chromatic number $\chi(G) $ of a graph $G$. A graph $G$ is called \emph{perfect} if $\chi(H)=\omega(H)$ for every indu
Externí odkaz:
http://arxiv.org/abs/1912.02211
Autor:
Singh, Abhishek Kr, Natarajan, Raja
Interaction between clique number $\omega(G) $ and chromatic number $\chi(G) $ of a graph is a well studied topic in graph theory. Perfect Graph Theorems are probably the most important results in this direction. Graph $G$ is called \emph{perfect} if
Externí odkaz:
http://arxiv.org/abs/1812.11108
Publikováno v:
Mathematics of Operations Research, 2002 Aug 01. 27(3), 460-469.
Externí odkaz:
https://www.jstor.org/stable/3690446