Zobrazeno 1 - 10
of 16
pro vyhledávání: '"particular solutions of odes"'
Autor:
Khudija Bibi
Publikováno v:
Symmetry, Vol 12, Iss 1, p 180 (2020)
This article explains how discrete symmetry groups can be directly applied to obtain the particular solutions of nonlinear ordinary differential equations (ODEs). The particular solutions of some nonlinear ordinary differential equations have been ge
Externí odkaz:
https://doaj.org/article/1d101faf7bde4d7ea59201cacf83102f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bibi, Khudija
Publikováno v:
AIMS Mathematics; 2024, Vol. 9 Issue 8, p22057-22066, 10p
Autor:
Wang, Yinkun, Xiang, Shuhuang
Publikováno v:
Mathematics of Computation; Jul2022, Vol. 91 Issue 336, p1893-1923, 31p
Publikováno v:
Journal of Mechanical Science & Technology; Jun2012, Vol. 26 Issue 6, p1711-1718, 8p
Publikováno v:
Journal of Mechanical Science & Technology; Jan2010, Vol. 24 Issue 1, p357-364, 8p
Autor:
Andrei D. Polyanin, Alexei I. Zhurov
Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also
Autor:
Tobias Weinzierl
New insight in many scientific and engineering fields is unthinkable without the use of numerical simulations running efficiently on modern computers. The faster we get new results, the bigger and accurate are the problems that we can solve. It is th
Autor:
Robert Conte, Micheline Musette
This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painlevé test and shows how Painlevé analysis provides a powerful algorithmic approach to building explicit solutions to nonl
Autor:
Norbert Euler
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 1 aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self