Zobrazeno 1 - 10
of 706
pro vyhledávání: '"partial Latin square"'
Autor:
Jónás, Béla
A partial Latin square of order $n$ can be represented by a $3$-dimensional chess-board of size $n\times n\times n$ with at most $n^2$ non-attacking rooks. In Latin squares, a subsystem and its most distant mate together have as many rooks as their c
Externí odkaz:
http://arxiv.org/abs/2208.06166
Autor:
Goudet, Olivier, Hao, Jin-Kao
Publikováno v:
In Computers and Operations Research October 2023 158
Autor:
Goudet, Olivier, Hao, Jin-Kao
The partial Latin square extension problem is to fill as many as possible empty cells of a partially filled Latin square. This problem is a useful model for a wide range of applications in diverse domains. This paper presents the first massively para
Externí odkaz:
http://arxiv.org/abs/2103.10453
Autor:
Haraguchi, Kazuya
A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest ext
Externí odkaz:
http://arxiv.org/abs/1405.2571
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Discrete Mathematics 2008 308(13):2830-2843
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Lecture Notes in Computer Science. 9075:182-198
A partial Latin square (PLS) is a partial assignment of nsymbols to an n×n grid such that, in each row and in each column, eachsymbol appears at most once. The partial Latin square extension problemis an NP-hard problem that asks for a largest exten
Autor:
Olivier Goudet, Jin-Kao Hao
The partial Latin square extension problem is to fill as many as possible empty cells of a partially filled Latin square. This problem is a useful model for a wide range of applications in diverse domains. This paper presents the first massively para
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b23d17ac1bbbe14d5b94e8674f14fe3
http://arxiv.org/abs/2103.10453
http://arxiv.org/abs/2103.10453
Autor:
Kazuya Haraguchi
Publikováno v:
Journal of Heuristics = Journal of Heuristics. 22(5):727-757
A partial Latin square (PLS) is a partial assignment of n symbols to an $$n\times n$$n×n grid such that, in each row and in each column, each symbol appears at most once. The PLS extension problem is an NP-hard problem that asks for a largest extens