Zobrazeno 1 - 10
of 106
pro vyhledávání: '"parabolic convection-diffusion"'
Autor:
N.T. Negero
Publikováno v:
Iranian Journal of Numerical Analysis and Optimization, Vol 13, Iss Issue 4, Pp 627-645 (2023)
A singularly perturbed time delay parabolic problem with two small pa-rameters is considered. The paper develops a finite difference scheme that is exponentially fitted on a uniform mesh in the spatial direction and uses the implicit-Euler method to
Externí odkaz:
https://doaj.org/article/66a8482d53c041d898084a4f590ab79d
Publikováno v:
Results in Applied Mathematics, Vol 21, Iss , Pp 100417- (2024)
This paper presents and successfully applies an optimized hybrid block technique using a variable stepsize implementation to integrate a type of singularly perturbed parabolic convection–diffusion problems. The problem under consideration is semi-d
Externí odkaz:
https://doaj.org/article/760956006f7949c9bfde445da59ebd92
Publikováno v:
Journal of Taibah University for Science, Vol 17, Iss 1 (2023)
A numerical method for solving one-dimensional (1D) parabolic convection–diffusion equation is provided. We consider the finite difference formulas with five points to obtain a numerical method. The proposed method converts the given equation, doma
Externí odkaz:
https://doaj.org/article/4fc0d05d7dfd46c1b26c0ac317e438b0
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 9 (2023)
This paper presents a parameter-uniform numerical method to solve the time dependent singularly perturbed delay parabolic convection-diffusion problems. The solution to these problems displays a parabolic boundary layer if the perturbation parameter
Externí odkaz:
https://doaj.org/article/3aa9066dd2b94876a8481fec4830dba1
Publikováno v:
Results in Applied Mathematics, Vol 18, Iss , Pp 100364- (2023)
The singularly perturbed parabolic convection–diffusion equations with integral boundary conditions and a large negative shift are studied in this paper. The implicit Euler method for the temporal direction and the exponentially fitted finite diffe
Externí odkaz:
https://doaj.org/article/7005f433c60f4c6884496edb82d80a39
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Naol Tufa Negero
Publikováno v:
Results in Applied Mathematics, Vol 16, Iss , Pp 100338- (2022)
In the present paper, an exponentially fitted numerical scheme is constructed and analyzed for solving singularly perturbed two-parameter parabolic problems with large temporal lag. The problem is discretized by the Crank–Nicolson scheme and the ex
Externí odkaz:
https://doaj.org/article/a89f495cadf84e85aa8c6b00c2c6a082
Publikováno v:
Journal of Applied and Computational Mechanics, Vol 7, Iss 2, Pp 535-545 (2021)
This paper deals with the numerical treatment of two-parametric singularly perturbed parabolic convection-diffusion problems. The scheme is developed through the Crank-Nicholson discretization method in the temporal dimension followed by fitting the
Externí odkaz:
https://doaj.org/article/696825331f7e49d8ac9e4e27192413f8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Results in Applied Mathematics, Vol 11, Iss , Pp 100174- (2021)
A robust numerical scheme is proposed to solve singularly perturbed large time-delay parabolic convection–diffusion problems. For domain discretization, the backward-Euler method for the time derivative and Micken’s type discretization for the sp
Externí odkaz:
https://doaj.org/article/6a992634e5104262be212e8af1ae51f5