Zobrazeno 1 - 10
of 650
pro vyhledávání: '"p-biharmonic operator"'
Autor:
Yony R. S. Leuyacc, Romulo D. Carlos
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-18 (2024)
Abstract In this work, we are interested in studying the existence of a ground state solution for the problem Δ ( w β ( x ) Δ u ) ± div ( w β ( x ) | ∇ u | p − 2 ∇ u ) = f ( x , u ) in B , and u = ∂ u ∂ ν = 0 on ∂ B , $$ \Delta (w_{
Externí odkaz:
https://doaj.org/article/5ee0262e3bb0459e8fc6b74f0b9acf39
Autor:
Unal Cihan
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 4916-4926 (2024)
In this work, we consider a special nondegenerate equation with two weights. We investigate multiplicity result of this biharmonic equation. Mainly, our purpose is to obtain this result using an alternative Ricceri’s theorem. Moreover, we give some
Externí odkaz:
https://doaj.org/article/300a60251cbf494cbe2c9994b937c567
Autor:
Batirkhan Turmetov, Valery Karachik
Publikováno v:
AIMS Mathematics, Vol 9, Iss 3, Pp 6832-6849 (2024)
In this paper, the solvability of some inverse problems for a nonlocal analogue of a fourth-order parabolic equation was studied. For this purpose, a nonlocal analogue of the biharmonic operator was introduced. When defining this operator, transforma
Externí odkaz:
https://doaj.org/article/ca7d2541ea5f4a269da4bff6af57441e
Autor:
Abdeljabbar Ghanmi, Abdelhakim Sahbani
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 29892-29909 (2023)
In this paper, we proved the existence and the multiplicity of solutions for some $ p(x) $-biharmonic problems involving singular nonlinearity and a Hardy potential. More precisely, by the use of the min-max method, we proved the existence of a nontr
Externí odkaz:
https://doaj.org/article/afe96b9eab2c4fd49e084a2ddf559f4e
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 557-570 (2023)
We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which
Externí odkaz:
https://doaj.org/article/b6046cfbf3df48d19ea6b3cddb683e1d
Publikováno v:
Axioms, Vol 13, Iss 5, p 332 (2024)
In this paper, we determine the variation formula for the first eigenvalue of (p,q)-biharmonic system on a closed Riemannian manifold. Several monotonic quantities are also derived.
Externí odkaz:
https://doaj.org/article/61131597ddd34436a7a7a1bb835ec640
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-7 (2023)
Abstract Let ( M , g ) $(M,g)$ be an n-dimensional complete Riemannian manifold with nonnegative Ricci curvature. In this paper, we consider an overdetermined problem of the biharmonic operator on a bounded smooth domain Ω in M. We deduce that the o
Externí odkaz:
https://doaj.org/article/448fff2bb8424c4f9f8fa1e7151c07c1
Autor:
Filippo Cammaroto
Publikováno v:
Cubo, Vol 24, Iss 3, Pp 501-519 (2022)
In this paper we establish some results of existence of infinitely many solutions for an elliptic equation involving the p-biharmonic and the p-Laplacian operators coupled with Navier boundary conditions where the nonlinearities depend on two real pa
Externí odkaz:
https://doaj.org/article/35da4c8edde74ff1bb091ed3471312e0