Zobrazeno 1 - 10
of 40
pro vyhledávání: '"p ( x ) $p(x)$ -Laplacian"'
Autor:
Bosheng Xiao, Qiongfen Zhang
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-23 (2024)
Abstract In this paper, we focus on the existence of ground state solutions for the p ( x ) $p(x)$ -Laplacian equation { − Δ p ( x ) u + λ | u | p ( x ) − 2 u = f ( x , u ) + h ( x ) in Ω , u = 0 , on ∂ Ω . $$ \textstyle\begin{cases} -\Delt
Externí odkaz:
https://doaj.org/article/7ceed99cb77243a8b5b5671b6acc95d1
Autor:
Nabil Chems Eddine, Dušan D. Repovš
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-33 (2023)
Abstract In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. W
Externí odkaz:
https://doaj.org/article/f40581080b564473babec95d4e6d74da
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
A. Khaleghi, A. Razani
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-11 (2022)
Abstract We study the existence and multiplicity of weak solutions for an elliptic problem involving p ( x ) $p(x)$ -Laplacian operator under Steklov boundary condition. The approach is based on variational methods.
Externí odkaz:
https://doaj.org/article/fe845c2984eb4f3fa1965b528bd526d6
Existence and blow-up of weak solutions of a pseudo-parabolic equation with logarithmic nonlinearity
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-17 (2022)
Abstract In this paper, we prove the existence of weak solutions of a pseudo-parabolic equation with logarithmic nonlinearity in an interval [ 0 , T ) $[0, T)$ by employing the Galerkin approximation method and compactness arguments. We show that the
Externí odkaz:
https://doaj.org/article/ebff5aee298e4eefb7439befeaf73f3c
Autor:
Giovany M. Figueiredo, A. Razani
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-16 (2021)
Abstract In this paper, a nonhomogeneous elliptic equation of the form − A ( x , | u | L r ( x ) ) div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) − 2 ∇ u ) = f ( x , u ) | ∇ u | L q ( x ) α ( x ) + g ( x , u ) | ∇ u | L s ( x ) γ ( x ) $
Externí odkaz:
https://doaj.org/article/b6237f483c6c4cc18f8c4ac2efab120d
Autor:
MirKeysaan Mahshid, Abdolrahman Razani
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-9 (2021)
Abstract Here, we consider the following elliptic problem with variable components: − a ( x ) Δ p ( x ) u − b ( x ) Δ q ( x ) u + u | u | s − 2 | x | s = λ f ( x , u ) , $$ -a(x)\Delta _{p(x)}u - b(x) \Delta _{q(x)}u+ \frac{u \vert u \vert ^
Externí odkaz:
https://doaj.org/article/9300dae60d1c4bd99685f10a6016cd9c
Autor:
Haikun Liu, Yongqiang Fu
Publikováno v:
AIMS Mathematics, Vol 6, Iss 9, Pp 9835-9858 (2021)
$ (-\varDelta)_{p(\cdot)}^{s(\cdot)}u+V(x)|u|^{p(x)-2}u = f(x,u)+g(x) $ where $ x\in\Omega\subset \mathbb{R}^n $, $ (-\varDelta)_{p(\cdot)}^{s(\cdot)} $ is $ s(x) $-$ p(x) $-Laplacian operator with $ 0 < s(x) < 1 < p(x) < \infty $ and $ p(x)s(x) <
Externí odkaz:
https://doaj.org/article/84f87dbc072c49b3aab6bc0c42c47f6d
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-14 (2021)
Abstract In this paper, using variational methods, we prove the existence of at least one positive radial solution for the generalized p ( x ) $p(x)$ -Laplacian problem − Δ p ( x ) u + R ( x ) u p ( x ) − 2 u = a ( x ) | u | q ( x ) − 2 u −
Externí odkaz:
https://doaj.org/article/02efdafbbfa74060a059e1f6b4389a6d
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-24 (2020)
Abstract We are concerned with the following elliptic equations with variable exponents: M ( [ u ] s , p ( ⋅ , ⋅ ) ) L u ( x ) + V ( x ) | u | p ( x ) − 2 u = λ ρ ( x ) | u | r ( x ) − 2 u + h ( x , u ) in R N , $$ M \bigl([u]_{s,p(\cdot,\c
Externí odkaz:
https://doaj.org/article/ae5ef7a7922f4378804e0d03e41b9684