Zobrazeno 1 - 10
of 1 442
pro vyhledávání: '"overconvergence"'
Autor:
Stoenchev, Miroslav1 (AUTHOR) mrs@tu-sofia.bg, Todorov, Venelin2,3 (AUTHOR) sggeorgiev@math.bas.bg, Georgiev, Slavi2,4 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Apr2024, Vol. 12 Issue 7, p979. 16p.
Autor:
Advocaat, Bryan
We provide for primes $p\ge 5$ a method to compute valuations appearing in the "formal" Katz expansion of the family $\frac{E_{k}^{\ast}}{V(E_{k}^{\ast})}$ derived from the family of Eisenstein series $E_{k}^{\ast}$. The overconvergence rates of the
Externí odkaz:
http://arxiv.org/abs/2306.11537
Autor:
Kiming, Ian, Rustom, Nadim
Publikováno v:
Research in Number Theory 10, Article number: 4 (2024)
Let $p$ be a prime number. Continuing and extending our previous paper with the same title, we prove explicit rates of overconvergence for modular functions of the form $\frac{E_k^{\ast}}{V(E_k^{\ast})}$ where $E_k^{\ast}$ is a classical, normalized
Externí odkaz:
http://arxiv.org/abs/2302.02630
Autor:
Advocaat, Bryan
Publikováno v:
In Journal of Number Theory June 2024 259:112-130
We show all Laurent $F$-crystals over $p$-adic fields are overconvergent.
Comment: 15 pages. Comments welcome
Comment: 15 pages. Comments welcome
Externí odkaz:
http://arxiv.org/abs/2211.14712
Autor:
Porat, Gal
We prove a conjecture of Emerton, Gee and Hellmann concerning the overconvergence of \'etale $(\varphi,\Gamma)$-modules in families parametrized by topologically finite type $\mathbb{Z}_{p}$-algebras. As a consequence, we deduce the existence of a na
Externí odkaz:
http://arxiv.org/abs/2209.05050
Publikováno v:
Mathematics, Vol 12, Iss 7, p 979 (2024)
This paper examines the relationship between the overconvergence of Fourier series and the existence of Hadamard–Ostrowski gaps. Ostrowski’s result on the overconvergence of power series serves as a motivating factor for obtaining a natural gener
Externí odkaz:
https://doaj.org/article/6156cb86260740029f602b24a6e0d064
In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gr{\"o}bner bases, even if the input is polynomials, the size of the output grows with the required
Externí odkaz:
http://arxiv.org/abs/2202.07509
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.