Zobrazeno 1 - 10
of 85
pro vyhledávání: '"opinion dynamics systems"'
Autor:
Filho, Edmundo Alves1 (AUTHOR) edmundoalves12@gmail.com, Lima, Francisco Welington1 (AUTHOR) tay@ufpi.edu.br, Alves, Tayroni Francisco Alencar1 (AUTHOR), Alves, Gladstone de Alencar2 (AUTHOR) alves.gladstone@gmail.com, Plascak, Joao Antonio3,4,5 (AUTHOR) pla@uga.edu
Publikováno v:
Physics (2624-8174). Sep2023, Vol. 5 Issue 3, p873-882. 10p.
Autor:
Alencar, David S. M.1 (AUTHOR), Alves, Tayroni F. A.1 (AUTHOR), Alves, Gladstone A.2 (AUTHOR), Macedo-Filho, Antonio2 (AUTHOR), Ferreira, Ronan S.3 (AUTHOR), Lima, F. Welington S.1 (AUTHOR) fwslima@gmail.com, Plascak, Joao A.4,5,6 (AUTHOR)
Publikováno v:
Entropy. Feb2023, Vol. 25 Issue 2, p183. 10p.
Autor:
Edmundo Alves Filho, Francisco Welington Lima, Tayroni Francisco Alencar Alves, Gladstone de Alencar Alves, Joao Antonio Plascak
Publikováno v:
Physics, Vol 5, Iss 3, Pp 873-882 (2023)
The critical properties of a discrete version of opinion dynamics systems, based on the Biswas–Chatterjee–Sen model defined on Solomon networks with both nearest and random neighbors, are investigated through extensive computer simulations. By em
Externí odkaz:
https://doaj.org/article/39029f82523f44d69cfcf2d19fc30897
Autor:
David S. M. Alencar, Tayroni F. A. Alves, Gladstone A. Alves, Antonio Macedo-Filho, Ronan S. Ferreira, F. Welington S. Lima, Joao A. Plascak
Publikováno v:
Entropy, Vol 25, Iss 2, p 183 (2023)
A discrete version of opinion dynamics systems, based on the Biswas–Chatterjee–Sen (BChS) model, has been studied on Barabási–Albert networks (BANs). In this model, depending on a pre-defined noise parameter, the mutual affinities can assign e
Externí odkaz:
https://doaj.org/article/2b32b5bb40884cc1a722f7fa4c0dca94
Publikováno v:
IET Control Theory & Applications, Vol 15, Iss 13, Pp 1769-1777 (2021)
Abstract This paper studies the stochastic stability of opinion formation systems under both non‐time delay and time delay. Individuals whose opinions are affected by multiplicative noise are considered. Subsequently, a stochastic opinion formation
Externí odkaz:
https://doaj.org/article/ce7689c4f1f74689aca98c43a9760464
Autor:
Plascak, David S. M. Alencar, Tayroni F. A. Alves, Gladstone A. Alves, Antonio Macedo-Filho, Ronan S. Ferreira, F. Welington S. Lima, Joao A.
Publikováno v:
Entropy; Volume 25; Issue 2; Pages: 183
A discrete version of opinion dynamics systems, based on the Biswas–Chatterjee–Sen (BChS) model, has been studied on Barabási–Albert networks (BANs). In this model, depending on a pre-defined noise parameter, the mutual affinities can assign e
Autor:
Como, Giacomo, Fagnani, Fabio
Publikováno v:
Annals of Applied Probability 2011, Vol. 21, No. 4, 1537-1567
Scaling limits are analyzed for stochastic continuous opinion dynamics systems, also known as gossip models. In such models, agents update their vector-valued opinion to a convex combination (possibly agent- and opinion-dependent) of their current va
Externí odkaz:
http://arxiv.org/abs/1003.3384
Autor:
Como, Giacomo, Fagnani, Fabio
Publikováno v:
The Annals of Applied Probability, 2011 Aug 01. 21(4), 1537-1567.
Externí odkaz:
https://www.jstor.org/stable/23033379
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IET Control Theory & Applications, Vol 15, Iss 13, Pp 1769-1777 (2021)
This paper studies the stochastic stability of opinion formation systems under both non‐time delay and time delay. Individuals whose opinions are affected by multiplicative noise are considered. Subsequently, a stochastic opinion formation model on