Zobrazeno 1 - 5
of 5
pro vyhledávání: '"obyčejná diferenciální rovnice"'
Autor:
Mladá, Kateřina
This thesis gives a brief introduction to the Hamiltonian formalism and symplectic geometry. The Hamilton theory is applied on three systems - the pendulum, a parti- cle in a central potential field and rigid body rotation.The main focus of this thes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::b6ede3f98a6fab137f6064d6cd6dbaeb
http://www.nusl.cz/ntk/nusl-448894
http://www.nusl.cz/ntk/nusl-448894
Autor:
Hubatová, Michaela
This thesis extends the basic ordinary differential equations (ODE) course, specifically considering perturbations of ODEs. We introduce uniformly asympto- tic approximation and uniformly ordered approximation. We provide a perturba- tion-based metho
Externí odkaz:
http://www.nusl.cz/ntk/nusl-357030
Autor:
Hubatová, Michaela
This thesis extends the basic ordinary differential equations (ODE) course, specifically considering perturbations of ODEs. We introduce uniformly asympto- tic approximation and uniformly ordered approximation. We provide a perturba- tion-based metho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::ab1176dbac0e6d7f54ec0afa22e5ea87
http://www.nusl.cz/ntk/nusl-357030
http://www.nusl.cz/ntk/nusl-357030
Autor:
Drašnar, Jan
This thesis uses a simple deterministic model represented by an ordinary di- fferential equation with two equilibrium points - depending on the initial state the illness either vanishes or persists forever. This model is expanded by adding some diffu
Externí odkaz:
http://www.nusl.cz/ntk/nusl-346767
Autor:
Drašnar, Jan
This thesis uses a simple deterministic model represented by an ordinary di- fferential equation with two equilibrium points - depending on the initial state the illness either vanishes or persists forever. This model is expanded by adding some diffu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::2d29b3349157af0ab015807ba2d36f2a
http://www.nusl.cz/ntk/nusl-346767
http://www.nusl.cz/ntk/nusl-346767