Zobrazeno 1 - 10
of 1 200
pro vyhledávání: '"numerical semigroup"'
Publikováno v:
Mathematica Bohemica, Vol 149, Iss 3, Pp 439-454 (2024)
Let $\Delta$ be a numerical semigroup. In this work we show that $\mathcal{J}(\Delta) =\{I\cup\nobreak\{0\} I is an ideal of \Delta\}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows u
Externí odkaz:
https://doaj.org/article/3e5fb4781e6f4d3c8ce9acbc41e6174d
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-11 (2024)
The computation of the clique number of a graph is a fundamental problem in graph theory, which has many applications in computational chemistry, bioinformatics, computer, and social networking. A subset [Formula: see text] of non-negative integers [
Externí odkaz:
https://doaj.org/article/abfc2b24c0cd4d2081004307040075c9
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 286-293 (2024)
A subset Δ of non-negative integers [Formula: see text] is called a numerical semigroup if it is a submonoid of [Formula: see text] and has a finite complement in [Formula: see text]. A graph [Formula: see text] is called a [Formula: see text]-graph
Externí odkaz:
https://doaj.org/article/03671f2af19c416989cccdc74440cfac
Publikováno v:
Foundations, Vol 4, Iss 2, Pp 249-262 (2024)
In this work, we show that if F is a positive integer, then Sat(F)={S∣S is a saturated numerical semigroup with Frobenius number F} is a covariety. As a consequence, we present two algorithms: one that computes Sat(F), and another which computes al
Externí odkaz:
https://doaj.org/article/18f88bf4d8644631be561172f1a715ed
Publikováno v:
Heliyon, Vol 10, Iss 13, Pp e33627- (2024)
In the theory of numerical semigroups, characterizing numerical semigroups in terms of pseudo-Frobenius numbers is one of the fundamental problems, which is very difficult to achieve in general. This article's main purpose is to answer this problem i
Externí odkaz:
https://doaj.org/article/2305e8ce0e6c49a7ba1fcaa4c0823d25
Autor:
Bernardini, Matheus, Melo, Patrick
Publikováno v:
Involve 16 (2023) 313-319
In this paper, we provide a generalization of a theorem proved by Eliahou and Fromentin, which exhibit a remarkable property of the sequence $(n'_g)$, where $n'_g$ denotes the number of gapsets with genus $g$ and depth at most $3$.
Comment: 6 pa
Comment: 6 pa
Externí odkaz:
http://arxiv.org/abs/2202.07694
Publikováno v:
Symmetry, Vol 16, Iss 7, p 854 (2024)
A subset S of non-negative integers No is called a numerical semigroup if it is a submonoid of No and has a finite complement in No. An undirected graph G(S) associated with S is a graph having V(G(S))={vi:i∈No∖S} and E(G(S))={vivj⇔i+j∈S}. In
Externí odkaz:
https://doaj.org/article/9f7a163a1e2941a2a78ab9401b45947d
Autor:
Carmelo Cisto
Publikováno v:
Axioms, Vol 13, Iss 7, p 488 (2024)
Let S and C be affine semigroups in Nd such that S⊆C. We provide a characterization for the set C∖S to be finite, together with a procedure and computational tools to check whether such a set is finite and, if so, compute its elements. As a conse
Externí odkaz:
https://doaj.org/article/280a46f23753428ab08565874c338f5b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Axioms, Vol 13, Iss 3, p 193 (2024)
In this work, we will introduce the concept of ratio-covariety, as a family R of numerical semigroups that has a minimum, denoted by min(R), is closed under intersection, and if S∈R and S≠min(R), then S\{r(S)}∈R, where r(S) denotes the ratio of
Externí odkaz:
https://doaj.org/article/8c1d1ac6d1ce4827a117fbd3b373d791