Zobrazeno 1 - 10
of 22
pro vyhledávání: '"normal behaviour models"'
Autor:
Pere Marti-Puig, Jordi Cusidó, Francisco J. Lozano, Moises Serra-Serra, Cesar F. Caiafa, Jordi Solé-Casals
Publikováno v:
Applied Sciences, Vol 12, Iss 19, p 9491 (2022)
In this paper, the time variation of signals from several SCADA systems of geographically closed turbines are analysed and compared. When operating correctly, they show a clear pattern of joint variation. However, the presence of a failure in one of
Externí odkaz:
https://doaj.org/article/cea359fa1387472eb56e8afd2328f127
Publikováno v:
Applied Sciences, Vol 11, Iss 14, p 6405 (2021)
Today, the use of SCADA data for predictive maintenance and forecasting of wind turbines in wind farms is gaining popularity due to the low cost of this solution compared to others that require the installation of additional equipment. SCADA data pro
Externí odkaz:
https://doaj.org/article/5de99b7c9a934e018560baf2ddfbc6a9
Publikováno v:
Applied Sciences, Vol 11, Iss 2, p 590 (2021)
In this paper, a method to build models to monitor and evaluate the health status of wind turbines using Single-hidden Layer Feedforward Neural networks (SLFN) is presented. The models are trained using the Extreme Learning Machines (ELM) strategy. T
Externí odkaz:
https://doaj.org/article/2851c5ced0084e80b6ee8841ead4f9c1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applied Sciences, Vol 11, Iss 6405, p 6405 (2021)
O2, repositorio institucional de la UOC
Universitat Oberta de Catalunya (UOC)
Applied Sciences
Volume 11
Issue 14
O2, repositorio institucional de la UOC
Universitat Oberta de Catalunya (UOC)
Applied Sciences
Volume 11
Issue 14
Today, the use of SCADA data for predictive maintenance and forecasting of wind turbines in wind farms is gaining popularity due to the low cost of this solution compared to others that require the installation of additional equipment. SCADA data pro
Autor:
Letzgus, Simon
SCADA data analysis has attracted considerable research interest for monitoring wind turbine condition without additional equipment. Above all, normal behaviour models using artificial neural networks have shown promising results. However, the crucia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::699748d5c83363e7722b0c7f9a238f44
Autor:
Letzgus, Simon
SCADA data analytics has attracted considerable research interest for monitoring wind turbine condition without additional equipment. Above all, normal behaviour models using artificial neural networks (ANNs) have shown promising results. However, th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bdcf7f2dcd39c14b877d61ee7c90eb17
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applied Sciences
Volume 11
Issue 2
Applied Sciences, Vol 11, Iss 590, p 590 (2021)
Volume 11
Issue 2
Applied Sciences, Vol 11, Iss 590, p 590 (2021)
In this paper, a method to build models to monitor and evaluate the health status of wind turbines using Single-hidden Layer Feedforward Neural networks (SLFN) is presented. The models are trained using the Extreme Learning Machines (ELM) strategy. T
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.