Zobrazeno 1 - 9
of 9
pro vyhledávání: '"nonmultiple characteristics"'
Autor:
Aleksandr A Andreev, Julia O Yakovleva
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 21, Iss 4, Pp 752-759 (2017)
In the paper the Cauchy problem is considered for the hyperbolic differential equation of the n-th order with the nonmultiple characteristics. The regular solution of the Cauchy problem for the hyperbolic differential equation of the n-th order with
Externí odkaz:
https://doaj.org/article/f91d6eb0b0d7489c82b1f3099992ac94
Autor:
Aleksandr A Andreev, Julia O Yakovleva
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 20, Iss 2, Pp 241-248 (2016)
In the paper the problem of Cauchy is considered for the hyperbolic differential equation of the n-th order with the nonmultiple characteristics. The Cauchy problem is considered for the hyperbolic differential equation of the third order with the no
Externí odkaz:
https://doaj.org/article/2a96947a8c5f49a9946a61d4b201cbae
Autor:
Aleksandr A Andreev, Julia O Yakovleva
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 18, Iss 4, Pp 7-15 (2014)
We consider the Cauchy problem for the hyperbolic differential equation of the forth order with nonmultiple characteristics. We generalize this problem from the similar Cauchy problem for the hyperbolic differential equation of the third order with n
Externí odkaz:
https://doaj.org/article/3823be78da4f43bfa4a1cf9b16f279af
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 17, Iss 1, Pp 31-36 (2013)
We consider the well-posed characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics. The solution of this problem is constructed in an explicit form. The example of the
Externí odkaz:
https://doaj.org/article/56656c0a5cc44690b379b2175c08a5f8
Autor:
Julia O Yakovleva
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 16, Iss 3, Pp 180-183 (2012)
In the paper we consider the well-posed characteristic problem for the general hyperbolic differential equation of the third order with nonmultiple characteristics. The solution of this problem is constructed in an explicit form. The illustrative exa
Externí odkaz:
https://doaj.org/article/3d9092b99e9540caa3eb7d0576efc50e
Autor:
Julia O Yakovleva
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 16, Iss 1, Pp 247-250 (2012)
The Cauchy problem for the third order hyperbolic differential equation with nonmultiple characteristics is considered. The analogue of DAlembert formula is obtained as a solution that allows describing the propagation of initial displacement, initia
Externí odkaz:
https://doaj.org/article/ff72c214b66a488e9763fee7456376b1
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 21, Iss 4, Pp 752-759 (2017)
In the paper the Cauchy problem is considered for the hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics. The regular solution of the Cauchy problem for the hyperbolic differential equation of the $n$-th order w
Publikováno v:
Вестник Самарского государственного технического университета. Серия Физико-математические науки.
Для дифференциального уравнения гиперболического типа порядка $n$ с некратными характеристиками рассмотрена задача Коши. Приводятся по
Publikováno v:
Вестник Самарского государственного технического университета. Серия Физико-математические науки.
В статье для гиперболического дифференциального уравнения четвертого порядка с некратными характеристиками рассмотрена задача Коши.