Zobrazeno 1 - 10
of 35
pro vyhledávání: '"nonlinear model based control"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ECC
2019 18th European Control Conference (ECC)
2019 18th European Control Conference (ECC)
Nonlinear model predictive control (NMPC) is one of the few methods that can handle multivariate nonlinear control problems while accounting for process constraints. Many dynamic models are however affected by significant stochastic uncertainties tha
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lars Imsland, Eric Bradford
Publikováno v:
ECC
2018 European Control Conference (ECC) 1027-1034
2018 European Control Conference (ECC) 1027-1034
Model predictive control is a popular control approach for multivariable systems with important process constraints. The presence of significant stochastic uncertainties can however lead to closed-loop performance and infeasibility issues. A remedy i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eca77b5d730cc443fc13c0147b336a4
https://doi.org/10.5281/zenodo.1407532
https://doi.org/10.5281/zenodo.1407532
Autor:
Bradford, Eric, Imsland, Lars
Nonlinear model predictive control (NMPC) is an effective method for optimal operation of batch processes. Most dynamic models however contain significant uncertainties. It is therefore important to take these uncertainties into account in the formul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5e35f08a0ef6913e64df9d843e74f66
Publikováno v:
IFAC-PapersOnLine, 50(1)
Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e502df56e5792d3230ab049d031ecebc
http://resolver.tudelft.nl/uuid:5679b1a1-9a8a-42e4-b8d8-012296cea0a0
http://resolver.tudelft.nl/uuid:5679b1a1-9a8a-42e4-b8d8-012296cea0a0
Publikováno v:
2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM)
AIM
AIM
A difficulty still hindering the widespread application of Model Predictive Control (MPC) methodologies, remains the computational burden that is related to solving the associated Optimal Control (OC) problem for every control period. In contrast to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6925e0748079ee6df028a45c90b8f4e9
https://biblio.ugent.be/publication/8529774/file/8529776
https://biblio.ugent.be/publication/8529774/file/8529776
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Iplikci, S, Bahtiyar, B
This paper presents the very first field-programmable gate array (FPGA) implementation of the Runge-Kutta model predictive control (RKMPC) mechanism to the real-time experimental electromagnetic levitation system, which is an unstable nonlinear conti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3566::04390b031c2b1bcc8ebf706187c34346
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/23195
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/23195
Autor:
Serdar Iplikci, Bedri Bahtiyar
This paper presents the very first field-programmable gate array (FPGA) implementation of the Runge-Kutta model predictive control (RKMPC) mechanism to the real-time experimental electromagnetic levitation system, which is an unstable nonlinear conti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::027f672137e368d1344c079e0af11543
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10186
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10186