Zobrazeno 1 - 10
of 106
pro vyhledávání: '"non-negativity constraints"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 11, Iss 10, p 2338 (2023)
In this paper, a novel hyper-rectangle cover theory is developed. Two important concepts, the cover order and the cover length, are introduced. We construct a specific échelon form of the matrix in the same manner as that employed to determine the r
Externí odkaz:
https://doaj.org/article/1531b67d4e2a47daa7f8f155ead9ea64
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-10 (2020)
Abstract Conventional non-negative algorithms restrict the weight coefficient vector under non-negativity constraints to satisfy several inherent characteristics of a specific system. However, the presence of impulsive noise causes conventional non-n
Externí odkaz:
https://doaj.org/article/9730dc82b93d488d838423492c65567b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mancoo, Allan
Publikováno v:
Neuroscience. Université Paris sciences et lettres, 2021. English. ⟨NNT : 2021UPSLE015⟩
Large-scale recordings of neural activity are now widely carried out in many experimental labs, leading to the question of how to extract the essential structures in population data. One common approach is to use dimensionality reduction methods. How
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1398::c12d80ac589670f983493cca0befe2de
https://tel.archives-ouvertes.fr/tel-03764952
https://tel.archives-ouvertes.fr/tel-03764952
Autor:
Mancoo, Allan
Large-scale recordings of neural activity are now widely carried out in many experimental labs, leading to the question of how to extract the essential structures in population data. One common approach is to use dimensionality reduction methods. How
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::c12d80ac589670f983493cca0befe2de
https://theses.hal.science/tel-03764952
https://theses.hal.science/tel-03764952
Existing techniques for incremental learning are computationally expensive and produce duplicate features leading to higher false positive and true negative rates. We propose a novel privacy-preserving intrusion detection pipeline for distributed inc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1664::6e91a18cd49aa61ec94b72a3a3c2763f
https://hdl.handle.net/10576/30077
https://hdl.handle.net/10576/30077
Publikováno v:
Frontiers in Neuroscience, Vol 12 (2018)
Frontiers in Neuroscience
Frontiers in Neuroscience
Supervised learning has long been attributed to several feed-forward neural circuits within the brain, with particular attention being paid to the cerebellar granular layer. The focus of this study is to evaluate the input activity representation of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7596096fdadd599aa7a9d38c22325011
http://arxiv.org/abs/2003.01588
http://arxiv.org/abs/2003.01588
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sjölander, Pär
Publikováno v:
Applied Economics, 43, 8, 1019-1033
Engle's (1982) ARCH-LM test is the standard test to detect autoregressive conditional heteroscedasticity. In this paper, Monte Carlo simulations are used to demonstrate that the test's statistical size is biased in finite samples. Two complementing r
Externí odkaz:
http://www.ssoar.info/ssoar/handle/document/24653