Zobrazeno 1 - 10
of 3 689
pro vyhledávání: '"nilpotent orbits"'
Autor:
Panyushev, Dmitri I.
Let $G$ be a simple algebraic group and $\mathcal O$ a nilpotent orbit in $\mathfrak g$. Let ${\mathbf{CS}}(\mathcal O)$ denote the affine cone over the secant variety of $\overline{\mathbb P\mathcal O}\subset \mathbb P\mathfrak g$. Using the theory
Externí odkaz:
http://arxiv.org/abs/2412.20809
Let $G$ be a complex reductive algebraic group. In arxiv:2108.03453 Ivan Losev, Lucas mason-Brown and the third-named author suggested a symplectic duality between nilpotent Slodowy slices in $\mathfrak{g}^\vee$ and affinizations of certain $G$-equiv
Externí odkaz:
http://arxiv.org/abs/2410.20512
Autor:
Panyushev, Dmitri I.
Let $G$ be a simple algebraic group with $\mathfrak g=Lie(G)$ and $\mathcal O\subset\mathfrak g$ a nilpotent orbit. If $H$ is a reductive subgroup of $G$ with $Lie(H)=\mathfrak h$, then $\mathfrak g=\mathfrak h\oplus\mathfrak m$, where $\mathfrak m=\
Externí odkaz:
http://arxiv.org/abs/2410.09876
Autor:
Ferrari, Andrea E. V., Suter, Aiden
We verify a conjecture of Beem and the first author stating that a certain family of physically motivated BRST reductions of beta-gamma systems and free fermions is isomorphic to $L_1(\mathfrak{psl}_{n|n})$, and that its associated variety is isomorp
Externí odkaz:
http://arxiv.org/abs/2409.13028
Autor:
Okuda, Takayuki
For a non-compact simple Lie algebra $\mathfrak{g}$ over $\mathbb{R}$, we denote by $\mathcal{O}^{\mathbb{C}}_{\min,\mathfrak{g}}$ the unique complex nilpotent orbit in $\mathfrak{g} \otimes_\mathbb{R} \mathbb{C}$ containing all minimal real nilpoten
Externí odkaz:
http://arxiv.org/abs/2407.00675
Autor:
Baume, Florent, Lawrie, Craig
Many six-dimensional $(1,0)$ SCFTs are known to fall into families labelled by nilpotent orbits of certain simple Lie algebras. For each of the three infinite series of such families, we show that the anomalies for the continuous zero-form global sym
Externí odkaz:
http://arxiv.org/abs/2312.13347
Autor:
Jun, Bryan Wang Peng
A systematic way to organise the interesting periods of automorphic forms on a reductive group $G$ is via the theory of nilpotent orbits of $G$. On the other hand, it is known that the theta correspondence can be used effectively to relate automorphi
Externí odkaz:
http://arxiv.org/abs/2311.14234
Autor:
Deng, Haohua, Robles, Colleen
We show that every two-parameter period map admits a Kato--Nakayama--Usui completion to a morphism of log manifolds.
Externí odkaz:
http://arxiv.org/abs/2312.00542
The nilpotent cone of a simple Lie algebra is partitioned into locally closed subvarieties called special pieces, each containing exactly one special orbit. Lusztig conjectured that each special piece is the quotient of some smooth variety by a preci
Externí odkaz:
http://arxiv.org/abs/2308.07398