Zobrazeno 1 - 10
of 89
pro vyhledávání: '"n-convex functions"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-14 (2020)
Abstract This paper is devoted to obtain generalized results related to majorization-type inequalities by using well-known Fink’s identity and new types of Green functions, introduced by Mehmood et al. (J. Inequal. Appl. 2017:108, 2017). We give a
Externí odkaz:
https://doaj.org/article/8cfdb46ab5b748f3ba2fa1ba9b1a3337
Autor:
Rozarija Mikic, Josip Pečarić
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 17, Iss 2, Pp 139-159 (2020)
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a cla
Externí odkaz:
https://doaj.org/article/0dd1048acd2b4c9fb1c70511b06882a1
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 27, Iss 2, Pp 121-137 (2019)
Using two-point Abel-Gontscharoff interpolating polynomial some new generalizations of Steffensen’s inequality for n−convex functions are obtained and some Ostrowski-type inequalities related to obtained generalizations are given. Furthermore, us
Externí odkaz:
https://doaj.org/article/ee5510da19fe44d2a2930ef8eea024bc
Publikováno v:
Mathematics, Vol 10, Iss 9, p 1505 (2022)
In this paper, we obtain some new weighted Hermite–Hadamard-type inequalities for (n+2)−convex functions by utilizing generalizations of Steffensen’s inequality via Taylor’s formula.
Externí odkaz:
https://doaj.org/article/2e03a591c3c649f0bfbfd2404d14c1fa
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 420-428 (2018)
In this paper, we obtained new generalizations of Steffensen’s inequality for n-convex functions by using extension of Montgomery identity via Taylor’s formula. Since 1-convex functions are nondecreasing functions, new inequalities generalize Ste
Externí odkaz:
https://doaj.org/article/1a33f596892149b4b2d3e061defd5a50
Autor:
Anita Matković
Publikováno v:
Mathematics, Vol 9, Iss 19, p 2406 (2021)
We generalize an integral Jensen–Mercer inequality to the class of n-convex functions using Fink’s identity and Green’s functions. We study the monotonicity of some linear functionals constructed from the obtained inequalities using the definit
Externí odkaz:
https://doaj.org/article/39a812130ea04e988515270e7a37ad5c
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 24, Iss 3, Pp 161-188 (2016)
Extension of Montgomery's identity is used in derivation of Popoviciu-type inequalities containing sums , where f is an n-convex function. Integral analogues and some related results for n-convex functions at a point are also given, as well as Ostrow
Externí odkaz:
https://doaj.org/article/773f892a237242889da86c9db45325e4
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 73:89-106
UDC 517.5 We derive some Edmundson – Lah – Ribarič type inequalities for positive linear functionals and -convex functions. Main results are applied to the generalized -divergence functional. Examples with Zipf – Mandelbrot law are used to ill
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.