Zobrazeno 1 - 10
of 82
pro vyhledávání: '"multiplicity of positive solutions"'
Autor:
Jeongmi Jeong, Chan-Gyun Kim
Publikováno v:
Mathematics, Vol 12, Iss 23, p 3668 (2024)
We investigate the homogeneous Dirichlet boundary value problem for generalized Laplacian equations with a singular, potentially non-integrable weight. By examining asymptotic behaviors of the nonlinear term near 0 and ∞, we establish the existence
Externí odkaz:
https://doaj.org/article/4522628d7730488ca641eea1dea54960
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-16 (2018)
Abstract Consider the one-dimensional quasilinear impulsive boundary value problem involving the p-Laplace operator {−(ϕp(u′))′=λω(t)f(u),00 $\lambda, \mu >0$ are two positive parameters, ϕp(s) $\phi_{p}(s)$ is the p-Laplace operator, i.e.,
Externí odkaz:
https://doaj.org/article/61d2d1f26b294460ac5812491dc116ac
Autor:
Chan-Gyun Kim
Publikováno v:
Axioms, Vol 11, Iss 1, p 7 (2021)
In this paper, we consider generalized Laplacian problems with nonlocal boundary conditions and a singular weight, which may not be integrable. The existence of two positive solutions to the given problem for parameter λ belonging to some open inter
Externí odkaz:
https://doaj.org/article/7e61ffac3e654658af2c5dd65f30c3b0
Autor:
Mustafa Inc, Noureddine Bouteraa, Mehmet Ali Akinlar, Slimane Benaicha, Yu-Ming Chu, Gerhard-Wilhelm Weber, Bandar Almohsen
Publikováno v:
Applied Sciences, Vol 10, Iss 14, p 4863 (2020)
We are concerned with positive solutions of two types of nonlinear elliptic boundary value problems (BVPs). We present conditions for existence, uniqueness and multiple positive solutions of a first type of elliptic BVPs. For a second type of ellipti
Externí odkaz:
https://doaj.org/article/73d90f82c99a4a54a66e4b9d07cbc5f9
Autor:
Chan-Gyun Kim
Publikováno v:
Mathematics, Vol 8, Iss 5, p 680 (2020)
In this paper, we study singular φ -Laplacian nonlocal boundary value problems with a nonlinearity which does not satisfy the L 1 -Carathéodory condition. The existence, nonexistence and/or multiplicity results of positive solutions are established
Externí odkaz:
https://doaj.org/article/b14421bdbf1049c0b6a4431a9de19da3
Autor:
Jeongmi Jeong, Chan-Gyun Kim
Publikováno v:
Mathematics, Vol 8, Iss 3, p 420 (2020)
In this paper, using a fixed point index theorem on a cone, we present some existence results for one or multiple positive solutions to φ -Laplacian nonlocal boundary value problems when φ is a sup-multiplicative-like function and the nonlinearity
Externí odkaz:
https://doaj.org/article/0fb0fdccd23e4d19abf5eaf4e6b57a74
Autor:
Jeongmi Jeong, Chan-Gyun Kim
Publikováno v:
Mathematics, Vol 7, Iss 7, p 654 (2019)
This paper is concerned with the existence of positive solutions to singular Dirichlet boundary value problems involving φ -Laplacian. For non-negative nonlinearity f = f ( t , s ) satisfying f ( t , 0 ) ≢ 0 , the existence of an unbounded solutio
Externí odkaz:
https://doaj.org/article/d936a571b93645e2937e2c1572413709
Publikováno v:
Mathematics, Vol 7, Iss 5, p 438 (2019)
In this article, using a fixed point index theorem on a cone, we prove the existence and multiplicity results of positive solutions to a one-dimensional p-Laplacian problem defined on infinite intervals. We also establish the nonexistence results of
Externí odkaz:
https://doaj.org/article/474c9601a0764fe09dc9d7bdddd0a363