Zobrazeno 1 - 10
of 321
pro vyhledávání: '"moduli spaces of Abelian differentials"'
Autor:
Deroin, Bertrand, Matheus, Carlos
The strata of the moduli spaces of Abelian differentials are non-homogenous spaces carrying natural bi-algebraic structures. Partly inspired by the case of homogenous spaces carrying bi-algebraic structures (such as torii, Abelian varieties and Shimu
Externí odkaz:
http://arxiv.org/abs/2303.00642
This paper lays the foundation for determining the Kodaira dimension of the projectivized strata of Abelian differentials with prescribed zero and pole orders in large genus. We work with the moduli space of multi-scale differentials constructed in [
Externí odkaz:
http://arxiv.org/abs/2204.11943
For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most basic intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by mu
Externí odkaz:
http://arxiv.org/abs/2006.12803
We show that the Masur-Veech volumes and area Siegel-Veech constants can be obtained by intersection numbers on the strata of Abelian differentials with prescribed orders of zeros. As applications, we evaluate their large genus limits and compute the
Externí odkaz:
http://arxiv.org/abs/1901.01785
Autor:
Costantini, Matteo1 matteo.costantini@uni-due.de, Möller, Martin2 moeller@math.uni-frankfurt.de, Zachhuber, Jonathan2 zachhuber@math.uni-frankfurt.de
Publikováno v:
Forum of Mathematics, Pi. 7/1/2022, Vol. 10, p1-55. 55p. 6 Diagrams, 3 Charts.
Autor:
Magee, Michael
Publikováno v:
Compositio Math. 155 (2019) 2354-2398
J.-C. Yoccoz proposed a natural extension of Selberg's Eigenvalue Conjecture to moduli spaces of abelian differentials. We prove an approximation to this conjecture. This gives a qualitative generalization of Selberg's $\frac{3}{16}$ Theorem to modul
Externí odkaz:
http://arxiv.org/abs/1609.05500
Publikováno v:
Forum of Mathematics, Pi, Vol 10 (2022)
For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-sc
Externí odkaz:
https://doaj.org/article/eec33f9ff1e949718f64940cc199abef
Autor:
Chen, Dawei1 (AUTHOR), Möller, Martin2 (AUTHOR) moeller@math.uni-frankfurt.de, Sauvaget, Adrien3 (AUTHOR), Zagier, Don4 (AUTHOR)
Publikováno v:
Inventiones Mathematicae. Oct2020, Vol. 222 Issue 1, p283-373. 91p.
Publikováno v:
Publications de l'IHES, Vol. 97, no.1 (2003), 61-179
A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical point
Externí odkaz:
http://arxiv.org/abs/math/0202134
Autor:
Kontsevich, M., Zorich, A.
Publikováno v:
Inventiones mathematicae, volume 153 (2003), 631-678
Consider the moduli space of pairs (C,w) where C is a smooth compact complex curve of a given genus and w is a holomorphic 1-form on C with a given list of multiplicities of zeroes. We describe connected components of this space. This classification
Externí odkaz:
http://arxiv.org/abs/math/0201292