Zobrazeno 1 - 10
of 339
pro vyhledávání: '"modified equation analysis"'
The Immersed Boundary Method (IBM) is a popular numerical approach to impose boundary conditions without relying on body-fitted grids, thus reducing the costly effort of mesh generation. To obtain enhanced accuracy, IBM can be combined with high-orde
Externí odkaz:
http://arxiv.org/abs/2212.09560
Publikováno v:
In Computers and Fluids 15 May 2023 257
Publikováno v:
SoftwareX, Vol 12, Iss , Pp 100541- (2020)
The modified equation is a useful tool in the analysis of numerical methods for partial differential equations (PDEs). It gives insight into the stability, diffusion, and dispersion properties of a given numerical scheme. Its derivation, however, is
Externí odkaz:
https://doaj.org/article/f31eefe71ea24536b8d6fde61f79a193
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
LI, JIEQUAN, YANG, ZHICHENG
Publikováno v:
SIAM Journal on Numerical Analysis, 2011 Jan 01. 49(5/6), 2386-2406.
Externí odkaz:
http://dx.doi.org/10.1137/110822591
Publikováno v:
Computers & Fluids. 257:105869
Publikováno v:
SoftwareX, Vol 12, Iss, Pp 100541-(2020)
The modified equation is a useful tool in the analysis of numerical methods for partial differential equations (PDEs). It gives insight into the stability, diffusion, and dispersion properties of a given numerical scheme. Its derivation, however, is
Publikováno v:
Journal of Hydroinformatics, Vol 23, Iss 6, Pp 1290-1311 (2021)
The paper concerns the numerical solution of one-dimensional (1D) and two-dimensional (2D) advection–diffusion equations. For the numerical solution of the 1D advection–diffusion equation, a method, originally proposed for the solution of the 1D
Externí odkaz:
https://doaj.org/article/7edbbd541d084b9ca7cbadc0237fafd4
Autor:
Jiequan Li, Zhicheng Yang
Publikováno v:
SIAM Journal on Numerical Analysis. 49:2386-2406
Oscillations are ubiquitous in numerical solutions obtained by high order or even first order schemes for hyperbolic problems and are conventionally understood as the consequence of low dissipation effects of underlying numerical schemes. Earlier ana
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319197999
In this paper we present an assessment of the discontinuous Galerkin (DG) formulation through modified equation analysis (MEA). When applied to linear advection, MEA can help to clarify wave-propagation properties previously observed in DG. In partic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b90fc9aee192079f0f563534e5b77078
https://doi.org/10.1007/978-3-319-19800-2_34
https://doi.org/10.1007/978-3-319-19800-2_34