Zobrazeno 1 - 10
of 4 481
pro vyhledávání: '"metric measure space"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this note, we construct a Dirichlet-to-Neumann map, from a Besov space of functions, to the dual of this class. The Besov spaces are of functions on the boundary of a bounded, locally compact uniform domain equipped with a doubling measure support
Externí odkaz:
http://arxiv.org/abs/2403.06042
Autor:
Cao, Xiangzhi
In this paper, firstly, we study gradient estimates for positive solution of the following equation \begin{equation*} \Delta_\xi(u)-\partial_t u- q u =A(u),t\in (-\infty,\infty) \end{equation*} on metric measure space $ (M,g,e^{-\xi}\mathrm{d} v_g)$
Externí odkaz:
http://arxiv.org/abs/2209.12600
Autor:
OZAWA, RYUNOSUKE
Publikováno v:
Proceedings of the American Mathematical Society, 2017 Mar 01. 145(3), 1301-1315.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.145.3.1301
Autor:
Pan, Wu-yi, Dong, Xin-han
We show that the uncentered Hardy-Littlewood maximal operators associated with the Radon measure $\mu$ on $\mathbb{R}^d$ have the uniform lower $L^p$-bounds (independent of $\mu$) that are strictly greater than $1$, if $\mu$ satisfies a mild continui
Externí odkaz:
http://arxiv.org/abs/2210.00526
Autor:
Cao, Xiangzhi
In the paper, we derive Li-Yau gradient estimates and Souplet Zhang type estimates of the following equation \begin{equation*} \begin{split} u_t= \Delta_\xi p+\lambda u+A(u) , \end{split} \end{equation*} on complete noncompact metric measure space $
Externí odkaz:
http://arxiv.org/abs/2210.00224
Autor:
Filho, Marcio Costa Araújo
In this paper, we obtain lower bounds for the first eigenvalue to some kinds of the eigenvalue problems for Bi-drifted Laplacian operator on compact manifolds (also called a smooth metric measure space) with boundary and $m$-Bakry-Emery Ricci curvatu
Externí odkaz:
http://arxiv.org/abs/2111.09736
Publikováno v:
In Physics of the Dark Universe May 2023 40
The space consisting of uniformly continuous functions on a metric measure space with the $L^p$ norm
Autor:
Koshino, Katsuhisa
In this paper, we shall show that the space of real-valued uniformly continuous functions on a metric measure space with the $L^p$ norm is homeomorphic to the subspace consisting of sequences conversing to $0$ in the pseudo interior.
Comment: Th
Comment: Th
Externí odkaz:
http://arxiv.org/abs/2003.06014