Zobrazeno 1 - 10
of 17
pro vyhledávání: '"menger metric space"'
Autor:
Mahnaz Khanehgir, Reza Allahyari
Publikováno v:
پژوهشهای ریاضی, Vol 7, Iss 4, Pp 735-748 (2021)
In this paper, first by using the constructions of probabilistic b-metric Menger space and probabilistic metric like Menger space, we introduce probabilistic b-metric like Menger space and present some examples of it. Then, we state and prove some fi
Externí odkaz:
https://doaj.org/article/7a25eb9168804787ac446fd4351a3731
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 5, Iss 2, Pp 197-221 (2019)
In this paper, we prove some common coupled fixed point theorems for contractive mappings in Menger metric spaces under geometrically convergent t-norms. Also, we prove common fixed point theorems for pairs of weakly compatible mappings, which genera
Externí odkaz:
https://doaj.org/article/af8cfc1313a049719127d014cadf663e
Autor:
Hamid Shayanpour, Asiyeh Nematizadeh
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 13, Iss 1, Pp 31-50 (2019)
In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and the common property (E.A.) in modified intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some
Externí odkaz:
https://doaj.org/article/626e803ca6eb4777939d057ab751d65e
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 35, Iss 2, Pp 69-81 (2017)
In this work, we shall give some new results about generalized common fixed point theorems for two mappings $ f : X\rightarrow X$ and $ T : X^{k}\rightarrow X$ , where $X$ is dislocated probability quasi Menger metric space (briefly $DP_{q}$M-Space)
Externí odkaz:
https://doaj.org/article/dd0b634f8a7e4954b0c67f96f379a9a3
Autor:
L. Ben Aoua, A. Aliouche
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 8, Iss 2, Pp 195-210 (2016)
Coupled fixed point problems have attracted much attention in recent times. The aim of this paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled mappings in Menger metric space and use this notions to generalize
Externí odkaz:
https://doaj.org/article/fb56c5f4e40b4f7a9a50680a2ce7bff1
Autor:
Leila Aoua Ben, Aliouche Abdelkrim
Publikováno v:
Mathematica Moravica, Vol 20, Iss 2, Pp 59-85 (2016)
We establish a common fixed point theorem for mappings under φ-contractive conditions on intuitionistic Menger metric spaces. As an application of our result we study the existence and uniquenes of the solution to a nonlinear Fredholm integral equat
Externí odkaz:
https://doaj.org/article/7e36e2cdd5bf4e759d44b087680a0b27
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 35, Iss 2, Pp 69-81 (2017)
In this work, we shall give some new results about generalized common fixed point theorems for two mappings $ f : X\rightarrow X$ and $ T : X^{k}\rightarrow X$ , where $X$ is dislocated probability quasi Menger metric space (briefly $DP_{q}$M-Space)
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 8, Iss 2, Pp 195-210 (2016)
Coupled fixed point problems have attracted much attention in recent times. The aim of this paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled mappings in Menger metric space and use this notions to generalize
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ben Aoua, L., Aliouche, A.
Publikováno v:
Carpathian Mathematical Publications; Vol 8, No 2 (2016); 195-210
Карпатские математические публикации; Vol 8, No 2 (2016); 195-210
Карпатські математичні публікації; Vol 8, No 2 (2016); 195-210
Карпатские математические публикации; Vol 8, No 2 (2016); 195-210
Карпатські математичні публікації; Vol 8, No 2 (2016); 195-210
Coupled fixed point problems have attracted much attention in recent times. The aim of this paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled mappings in Menger metric space and use this notions to generalize