Zobrazeno 1 - 10
of 61
pro vyhledávání: '"measure of noncompactness (mnc)"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 3, Pp 5746-5762 (2024)
This article addressed the integrable and approximate solutions of Hadamard-type fractional Gripenberg's equation in Lebesgue spaces $ L_1[1, e] $. It is well known that the Gripenberg's equation has significant applications in mathematical biology.
Externí odkaz:
https://doaj.org/article/01cda43b714f4f4ca8d8e69e7f268690
Autor:
Mohamed M. A. Metwali
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-14 (2023)
Abstract A novel measure of noncompactness is defined in variable exponent Lebesgue spaces L p ( ⋅ ) $L^{p(\cdot )}$ on an unbounded domain R + $\mathbb{R}^{+}$ and its properties are examined. Using the fixed point method, we apply that measure to
Externí odkaz:
https://doaj.org/article/201eb5a152184fb2892e5a2b85d8080b
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-18 (2023)
Abstract In this paper, Darbo’s fixed point theorem is generalized and it is applied to find the existence of solution of a fractional integral equation involving an operator with iterative relations in a Banach space. Moreover, an example is provi
Externí odkaz:
https://doaj.org/article/c06c4ef99cfa4be38d7cd0f68cf54568
Publikováno v:
AIMS Mathematics, Vol 7, Iss 4, Pp 5594-5604 (2022)
Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches
Externí odkaz:
https://doaj.org/article/7e747d34261948769f3b7f3417778146
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 11, Iss 18, p 3901 (2023)
We provide and prove some new fundamental properties of the Erdélyi–Kober (EK) fractional operator, including monotonicity, boundedness, acting, and continuity in both Lebesgue spaces (Lp) and Orlicz spaces (Lφ). We employ these properties with t
Externí odkaz:
https://doaj.org/article/8e266ab7cdb64f0d946d79d06b8ecb8a
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-13 (2021)
Abstract In this work, we solve the system of integro-differential equations (in terms of Caputo–Fabrizio calculus) using the concepts of the best proximity pair (point) and measure of noncompactness. We first introduce the concept of cyclic (noncy
Externí odkaz:
https://doaj.org/article/da8e3b3272ee44b59fad70c9d443fd91
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-12 (2021)
Abstract The aim of this paper is the solvability of generalized proportional fractional(GPF) integral equation at Banach space E $\mathbb{E}$ . Herein, we have established a new fixed point theorem which is then applied to the GPF integral equation
Externí odkaz:
https://doaj.org/article/eef606fe81e442959de45f161b1ed22f
Autor:
Rahul, Nihar Kumar Mahato
Publikováno v:
AIMS Mathematics, Vol 6, Iss 12, Pp 13358-13369 (2021)
In this paper, we proposed a generalized of Darbo's fixed point theorem via the concept of operators S(∙;.) associated with the measure of noncompactness. Using this generalized Darbo fixed point theorem, we have given the existence of solution of
Externí odkaz:
https://doaj.org/article/02cc9d1f889642738afe561d5b7b6b7b
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-17 (2020)
Abstract We introduce an extension of Darbo’s fixed point theorem via a measure of noncompactness in a Banach space. By using our extension we study the existence of a solution for a system of nonlinear integral equations, which is an extended resu
Externí odkaz:
https://doaj.org/article/a54df0851a214419985dafde7f3eb3c5