Zobrazeno 1 - 10
of 7 146
pro vyhledávání: '"maximal operators"'
Autor:
Vempati, Manasa N.
In this article we obtain the characterization for the commutators of maximal functions on the weighted Morrey spaces in the setting of spaces of homogeneous type. More precisely, we characterize BMO spaces using the commutators of Hardy-Littlewood m
Externí odkaz:
http://arxiv.org/abs/2411.14767
Autor:
Cen, Xi
Based on the rapid development of dyadic analysis and the theory of variable weighted function spaces over the spaces of homogeneous type $(X,d,\mu)$ in recent years, we systematically consider the quantitative variable weighted characterizations for
Externí odkaz:
http://arxiv.org/abs/2408.04544
We consider maximal operators acting on vector valued functions, that is functions taking values on $\mathbb{C}^d,$ that incorporate matrix weights in their definitions. We show vector valued estimates, in the sense of Fefferman-Stein inequalities, f
Externí odkaz:
http://arxiv.org/abs/2407.16776
Autor:
Zhang Pu, Ağcayazı Müjdat
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 611-635 (2024)
In this work, we present necessary and sufficient conditions for the boundedness of the commutators generated by multilinear fractional maximal operators on the products of Morrey spaces when the symbol belongs to Lipschitz spaces.
Externí odkaz:
https://doaj.org/article/8f9c6ec40e384bb6adecf77484816afc
In this paper, the main aim is to demonstrate the boundedness for commutators of (fractional) maximal function and sharp maximal function in the slice spaces, where the symbols of the commutators belong to the BMO space, whereby some new characteriza
Externí odkaz:
http://arxiv.org/abs/2409.14387
Autor:
Gürkanlı, A. Turan
In \cite{g5}, we defined and investigated the grand Wiener amalgam space $W(L^{p),\theta_1}(\Omega), L^{q),\theta_2}(\Omega))$ , where $1
0, \theta_2>0$, $\Omega\subset\mathbb R^{n} $ and the Lebesgue measure of $\Omega$ is finit
Externí odkaz:
http://arxiv.org/abs/2408.02406
In this article we investigate $L^p$ boundedness of the spherical maximal operator $\mathfrak{m}^\alpha$ of (complex) order $\alpha$ on the $n$-dimensional hyperbolic space $\mathbb{H}^n$, which was introduced and studied by Kohen [13]. We prove that
Externí odkaz:
http://arxiv.org/abs/2408.02180
Autor:
Li, Wenjuan, Wang, Huiju
In this article, we study maximal functions related to hypersurfaces with vanishing Gaussian curvature in $\mathbb{R}^3$. Firstly, we characterize the $L^p\rightarrow L^q$ boundedness of local maximal operators along homogeneous hypersurfaces. Moreov
Externí odkaz:
http://arxiv.org/abs/2406.06876