Zobrazeno 1 - 9
of 9
pro vyhledávání: '"matrix rank inequality"'
Autor:
Ma Jiying
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 7, Iss 2, Pp 103-114 (2021)
This paper discusses the invariance of the rank of a matrix, the conditions and applications of matrix inequalities, the relationship between matrix rank and matrix operations, the relationship with matrix reversibility, the linear correlation with v
Externí odkaz:
https://doaj.org/article/b5fbae9ab07743e2a3cc80d231a650aa
Autor:
Lovitz, Benjamin1 benjamin.lovitz@gmail.com, Petrov, Fedor2,3 f.v.petrov@spbu.ru
Publikováno v:
Forum of Mathematics, Sigma. 2023, Vol. 11, p1-40. 40p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lovitz, Benjamin, Petrov, Fedor
Publikováno v:
Forum of Mathematics, Sigma, Volume 11, 2023, e27
Kruskal's theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a "splitting theorem" for sets of product tensors, in which the k-rank condition
Externí odkaz:
http://arxiv.org/abs/2103.15633
Autor:
Tian, Yongge
Publikováno v:
Computational & Applied Mathematics; Dec2022, Vol. 41 Issue 8, p1-17, 17p
Publikováno v:
IET Radar, Sonar & Navigation (Wiley-Blackwell); Dec2022, Vol. 16 Issue 12, p2089-2103, 15p
Autor:
Tian, Yongge
Publikováno v:
Indian Journal of Pure & Applied Mathematics; Dec2022, Vol. 53 Issue 4, p939-947, 9p
Autor:
Benjamin Lovitz, Fedor Petrov
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
Kruskal’s theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a ‘splitting theorem’ for sets of product tensors, in which the k-rank con
Externí odkaz:
https://doaj.org/article/d252b513e93642f593adf5872a3eb1fc
Autor:
Benjamin Lovitz, Fedor Petrov
Kruskal's theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a "splitting theorem" for sets of product tensors, in which the k-rank condition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4e8b6d042f2212ecdc4faa382b4ec7d8