Zobrazeno 1 - 10
of 97
pro vyhledávání: '"machine-learning (ML) algorithms"'
Autor:
Mauro Pettorruso, Giorgio Di Lorenzo, Beatrice Benatti, Giacomo d’Andrea, Clara Cavallotto, Rosalba Carullo, Gianluca Mancusi, Ornella Di Marco, Giovanna Mammarella, Antonio D’Attilio, Elisabetta Barlocci, Ilenia Rosa, Alessio Cocco, Lorenzo Pio Padula, Giovanna Bubbico, Mauro Gianni Perrucci, Roberto Guidotti, Antea D’Andrea, Laura Marzetti, Francesca Zoratto, Bernardo Maria Dell’Osso, Giovanni Martinotti
Publikováno v:
Frontiers in Psychiatry, Vol 15 (2024)
Treatment-Resistant Depression (TRD) poses a substantial health and economic challenge, persisting as a major concern despite decades of extensive research into novel treatment modalities. The considerable heterogeneity in TRD’s clinical manifestat
Externí odkaz:
https://doaj.org/article/ab6859736bd64b07a064f3541278c835
Autor:
J Robert Theivadas, Suresh Ponnan
Publikováno v:
Measurement: Sensors, Vol 33, Iss , Pp 101186- (2024)
In an era where autonomous vehicles are on the horizon, the importance of human vigilance during driving cannot be understated. One of the paramount challenges road safety advocates face is driver fatigue, a silent culprit behind many tragic accident
Externí odkaz:
https://doaj.org/article/b6ab8a249db54bf28022b00948fc65c6
Publikováno v:
Natural Hazards Research, Vol 2, Iss 4, Pp 363-374 (2022)
Floods are considered as one of nature's most destructive fluvio-hydrological extremes because of the massive damage to agricultural land, roads and buildings and human fatalities. Rapid development of unplanned infrastructural conveniences and unpla
Externí odkaz:
https://doaj.org/article/71c3742fd3d14b038a5d1c71f1b7f309
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Energies, Vol 16, Iss 12, p 4639 (2023)
The present study investigates the use of machine learning algorithms to estimate the state of health (SOH) of high-voltage batteries in electric vehicles. The analysis is based on open-circuit voltage (OCV) measurements from 12 vehicles with differe
Externí odkaz:
https://doaj.org/article/f5bb772ff2d24d44aa4c8d07a4267c3c
Autor:
Hayato Akimoto, Takuya Nagashima, Kimino Minagawa, Takashi Hayakawa, Yasuo Takahashi, Satoshi Asai
Publikováno v:
Frontiers in Pharmacology, Vol 13 (2022)
Drug-induced liver injury (DILI) is a common adverse drug reaction, with abnormal elevation of serum alanine aminotransferase (ALT). Several clinical studies have investigated whether a combination of two drugs alters the reporting frequency of DILI
Externí odkaz:
https://doaj.org/article/b7214cceb1894758950d82ec9097a8e4
Publikováno v:
IEEE Access, Vol 9, Pp 109522-109535 (2021)
Biological pairwise sequence alignment can be used as a method for arranging two biological sequence characters to identify regions of similarity. This operation has elicited considerable interest due to its significant influence on various critical
Externí odkaz:
https://doaj.org/article/953d4b4714004fa691b82d79880a938d
Autor:
Wilson K. M. Wong, Vinod Thorat, Mugdha V. Joglekar, Charlotte X. Dong, Hugo Lee, Yi Vee Chew, Adwait Bhave, Wayne J. Hawthorne, Feyza Engin, Aniruddha Pant, Louise T. Dalgaard, Sharda Bapat, Anandwardhan A. Hardikar
Publikováno v:
Frontiers in Endocrinology, Vol 13 (2022)
Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-
Externí odkaz:
https://doaj.org/article/4c6b7c34dcfa4335982bc4796e302990
Autor:
Tianjun Wu, Jiancheng Luo, Wen Dong, Lijing Gao, Xiaodong Hu, Zhifeng Wu, Yingwei Sun, Jinsong Liu
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 1189-1205 (2020)
Accurate spatialization of socioeconomic data is conducive to understand the spatial and temporal distribution of human social development status and, thus, effectively support future scientific decision-making. This study focuses on population mappi
Externí odkaz:
https://doaj.org/article/a389915b5a144ada823cc2f795a0be22