Zobrazeno 1 - 10
of 2 204
pro vyhledávání: '"lucas polynomials"'
In this paper we derive some new identities involving the Fibonacci and Lucas polynomials and the Chebyshev polynomials of the first and the second kind. Our starting point is a finite trigonometric sum which equals the resolvent kernel on the discre
Externí odkaz:
http://arxiv.org/abs/2403.12516
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yılmaz Nazmıye
Publikováno v:
Mathematica Moravica, Vol 28, Iss 1, Pp 97-108 (2024)
In this paper, new identities are obtained by using the generalized bivariate Fibonacci and Lucas polynomials. Firstly, several binomial summations and the closed formulas for summation of powers are investigated for these polynomials. Also, general
Externí odkaz:
https://doaj.org/article/d5bd78b05a7b4ab4a5ff33d1dae7d5fc
Autor:
Zriaa, Said, Mouçouf, Mohammed
In this work, we define a more general family of polynomials in several variables satisfying a linear recurrence relation. Then we provide explicit formulas and determinantal expressions. Finally, we apply these results to recurrent polynomials of or
Externí odkaz:
http://arxiv.org/abs/2305.12016
Publikováno v:
Proceedings of the Nigerian Society of Physical Sciences, Vol 1, Iss 1 (2024)
In this study, the numerical solution of the Volterra-integro differential equations was obtained by applying the variational iteration strategy with the shifted Vieta-Lucas polynomials. The proposed method builds the shifted Vieta-Lucas polynomials
Externí odkaz:
https://doaj.org/article/749a8fc9f2484c8ea4e3c15649155546
Autor:
Dongwei Guo1 guo.dongwei2018@outlook.com, Wenchang Chu2 chu.wenchang@unisalento.it
Publikováno v:
Publications de l'Institut Mathématique. 2024, Vol. 115 Issue 129, p77-100. 24p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
M. Askari
Publikováno v:
Iranian Journal of Numerical Analysis and Optimization, Vol 13, Iss Issue 4, Pp 695-710 (2023)
The aim of this article is to present a new method based on Lucas poly-nomials and residual error function for a numerical solution of fractional Bagley–Torvik equations. Here, the approximate solution is expanded as a linear combination of Lucas p
Externí odkaz:
https://doaj.org/article/3a392c6a611e4597b060e54238939bac
Publikováno v:
Ukrainian Mathematical Journal. Sep2023, Vol. 75 Issue 4, p562-585. 24p.
Autor:
Cigler, Johann
We give a simplified presentation of some results about recurrences of certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
http://arxiv.org/abs/2212.02118