Zobrazeno 1 - 10
of 328
pro vyhledávání: '"logP prediction"'
Autor:
Danalev, Dancho1 (AUTHOR) ddanalev@uctm.edu, Iliev, Ivan2 (AUTHOR) taparsky@abv.bg, Dobrev, Stefan3 (AUTHOR) sdobrev@iom.bas.bg, Angelova, Silvia3 (AUTHOR) sea@iomt.bas.bg, Petrin, Stoiko1 (AUTHOR), Dzimbova, Tatyana4 (AUTHOR) tania_dzimbova@abv.bg, Ivanova, Elena2 (AUTHOR) elena9512@abv.bg, Borisova, Dessislava5 (AUTHOR) dborissova@yahoo.com, Naydenova, Emilia5 (AUTHOR) emilia@uctm.edu
Publikováno v:
Pharmaceutics. Apr2023, Vol. 15 Issue 4, p1123. 14p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lui, Raymond1 (AUTHOR), Guan, Davy1 (AUTHOR), Matthews, Slade1 (AUTHOR) slade.matthews@sydney.edu.au
Publikováno v:
Journal of Computer-Aided Molecular Design. May2020, Vol. 34 Issue 5, p523-534. 12p.
Autor:
Guan, Davy1 (AUTHOR), Lui, Raymond1 (AUTHOR), Matthews, Slade1 (AUTHOR) slade.matthews@sydney.edu.au
Publikováno v:
Journal of Computer-Aided Molecular Design. May2020, Vol. 34 Issue 5, p511-522. 12p.
Autor:
Dancho Danalev, Ivan Iliev, Stefan Dobrev, Silvia Angelova, Stoiko Petrin, Tatyana Dzimbova, Elena Ivanova, Dessislava Borisova, Emilia Naydenova
Publikováno v:
Pharmaceutics, Vol 15, Iss 4, p 1123 (2023)
(1) Background: Hydrophobicity (or lipophilicity) is a limiting factor in the ability of molecules to pass through cell membranes and to perform their function. The ability to efficiently access cytosol is especially important when a synthetic compou
Externí odkaz:
https://doaj.org/article/d82a6f044e184e70acf75b75b677df3e
Autor:
Prasad, Samarjeet1,2 (AUTHOR) samar.samarjeet@nih.gov, Brooks, Bernard R.2 (AUTHOR)
Publikováno v:
Journal of Computer-Aided Molecular Design. May2020, Vol. 34 Issue 5, p535-542. 8p.
Publikováno v:
Processes
Volume 9
Issue 11
Processes, Vol 9, Iss 2029, p 2029 (2021)
Chen, Y-K, Shave, S & Auer, M 2021, ' MRlogP : Transfer learning enables accurate logP prediction using small experimental training datasets ', Processes, vol. 9, no. 11, 2029 . https://doi.org/10.3390/pr9112029
Volume 9
Issue 11
Processes, Vol 9, Iss 2029, p 2029 (2021)
Chen, Y-K, Shave, S & Auer, M 2021, ' MRlogP : Transfer learning enables accurate logP prediction using small experimental training datasets ', Processes, vol. 9, no. 11, 2029 . https://doi.org/10.3390/pr9112029
Small molecule lipophilicity is often included in generalized rules for medicinal chemistry. These rules aim to reduce time, effort, costs, and attrition rates in drug discovery, allowing the rejection or prioritization of compounds without the need
Autor:
Yin, Jiajian a, b, ⁎
Publikováno v:
In Procedia Environmental Sciences 2011 8:173-178
Autor:
Chen, Yan-Kai
Prediction of small molecule physiochemical properties and their biological targets is extremely valuable in the effort to reduce costs and attrition rates within drug discovery. In-silico techniques are now routinely used to guide medicinal chemistr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65de9fc617ceb77908c2cc41d21ec7fe
https://hdl.handle.net/1842/40373
https://hdl.handle.net/1842/40373
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.